
z/OS Communications Server

CMIP Services and Topology Agent Guide
Version 1 Release 2

SC31-8828-01

���

z/OS Communications Server

CMIP Services and Topology Agent Guide
Version 1 Release 2

SC31-8828-01

���

Note:
Before using this information and the product it supports, be sure to read the general information under “Appendix I. Notices”
on page 355.

First Edition (December 2001)

This edition applies to Version 1 Release 2 of z/OS (Program Number 5694–A01) and to all subsequent releases
and modifications until otherwise indicated in new editions.

Publications are not stocked at the address given below. If you want more IBM publications, ask your IBM
representative or write to the IBM branch office serving your locality.

IBM Corporation
Software Reengineering
Department G7IA/ Bldg 503
Research Triangle Park, NC 27709-9990

If you prefer to send comments electronically, use one of the following methods:

Fax (USA and Canada):
1-800-227-5088

Internet e-mail:
usib2hpd@vnet.ibm.com

World Wide Web:
http://www.ibm.com/servers/eserver/zseries/zos/

IBMLink:
CIBMORCF at RALVM17

IBM Mail Exchange:
tkinlaw@us.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1995, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/

Contents

Figures . xi

Tables . xiii

About This Book . xv
Where to Find More Information. xv

Where to Find Related Information on the Internet xv
Licensed Documents . xvi
LookAt, an Online Message Help Facility xvii
How to Contact IBM® Service xvii
z/OS Communications Server Information. xvii

Summary of Changes . xxv

Part 1. VTAM CMIP Services . 1

Chapter 1. Introduction to Object Orientation and CMIP Services 3
Object-Oriented View of Resources 3
Relationship between CMIP Services and Local Application Programs 4
Relationship between CMIP Services and Remote Management Systems. . . . 5
Overview of CMIP Services. 5

Locates Objects . 6
Registers Objects . 6
Coordinates Traffic . 7
Replicates Scoped Requests 7
Filters and Routes Events . 7
Provides Security . 9
Creates and Ends Associations 9
Manages Associations. 9
Manages PDUs. 10
Supports All CMIP Verbs and Most CMIP Parameters. 11

Requirements for Application Programs 11
Types of Application Programs 12

Basic Application Programs 12
Subtree Managers . 12
Create Handlers . 13
Special Considerations for Manager Application Programs 13
Special Considerations for Topology Manager Application Programs 14

CMIP Error Handling . 15
General Error Handling . 15

CMIP Sequencing for Separate CMIP Operations 16

Chapter 2. Sample CMIP Application Program 19
ACYCMS1C Source File . 22
ACYCMS2A Source File . 29
ACYCMS3A Source File . 31
ACYCMS4A Source File . 34
ACYCMS5A Source File . 35
ACYCMS6A Source File . 36
ACYCMS7A Source File . 38

Chapter 3. Overview of CMIP Services API Functions 41
Decisions to Make before Coding 41

© Copyright IBM Corp. 1995, 2001 iii

Common Storage Area Storage or Data Space Storage? 41
What Form of Distinguished Name? 44
What Type of Application Program—Manager or Agent? 44

Requirements for CMIP Application Programs 44
Format of API Messages . 45

Description and Example of the API header 45
API Header Fields. 46
Description and Example of the String 48
Rules for the Source and Destination Fields in the String 50

Chapter 4. CMIP Services API Function Syntax and Operands 53
Overview of API Functions . 53
How the Functions Are Coded 53
How the Functions Are Described 54
Completion Information . 54
Synchronous and Asychronous Functions 55
MIBConnect—MIB Connection Function. 56
MIBDisconnect—MIB Disconnection Function 67
MIBSendCmipRequest—CMIP Request Function 70
MIBSendCmipResponse—CMIP Response Function 73
MIBSendDeleteRegistration—Deregistration Function 77
MIBSendRegister—MIB Asynchronous Registration Function 79
MIBSendRequest—MIB Queue Request Function 83
MIBSendResponse—MIB Queue Response Function 85

Chapter 5. Read Queue Exit Routine 87
Read Queue Exit Routine for the CSA Interface 87

VTAM Reason Codes (for CSA) 88
Registers upon Entry (for CSA) 88
Registers upon Termination (for CSA) 88
Parameter List (for CSA) . 89

Read Queue Exit Routine for Data Space Storage 89
VTAM Reason Codes (for Data Space) 89
Registers upon Entry (for Data Space) 90
Registers upon Termination (for Data Space) 90
Parameter List (for Data Space) 90

Chapter 6. Dequeue and Release Routines for Data Space Storage 91
Format of Data on Data Space 91
Dequeueing a Buffer with the Dequeue Routine 92

Input to the Dequeue Routine 92
Output for Dequeue Routine 92

Releasing a Buffer with the Release Routine 93
Input to the Release Routine 93
Output to the Release Routine 93

Chapter 7. Rules for Constructing Standard CMIP Strings. 95
Overview . 95
How Application Programs Format Data to Be Sent to CMIP Services. 95

Explicit Value Format . 97
ASN.1 Value Format . 97
MIB Variable Format . 98
Constructed Value Format . 99
Hexadecimal BER Format 100

Primitive ASN.1 Data Types. 101
BOOLEAN Type . 101

iv z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

INTEGER Type . 102
ENUMERATED Type . 103
REAL Type . 104
BIT STRING Type . 105
OCTET STRING Type . 106
NULL Type . 107
OBJECT IDENTIFIER Type 108
Character String Types . 109
Time Types . 112

Constructed ASN.1 Types . 112
How CMIP Services Sends a Constructed Type to an Application Program 113
SEQUENCEs . 113
SETs . 114
SET OF and SEQUENCE OF Types 114

Decision Types . 115
CHOICE Types . 115
ANY DEFINED BY Types 116
ANY Types . 117
Additional Examples of How Application Programs Send Data 117

Chapter 8. Examples of Standard CMIP Strings 121
Requests and Indications . 122

GET Request—Syntax . 122
GET Request—Example Request String 122
GET Request—Corresponding Indication 122
ACTION Request—Syntax 123
ACTION Request—Example Request String 123
ACTION Request—Corresponding Indication 123

Responses and Confirmations 124
GET Response—Syntax . 124
GET Response—Example Response String 124
GET Response—Corresponding Confirmation 124
CREATE Response—Syntax 125
CREATE Response—Example Response String 125
CREATE Response—Corresponding Confirmation 126

Chapter 9. Create and Delete Requests 129
Create Requests . 129

Creating the New Object Requested on the Create Request 129
Rejecting the Create Request 129
Creating an Object Different from Object on the Create Request 130

Delete Requests . 130
Deleting the Object Requested on the Delete Request 130
Rejecting the Delete Request 130

Chapter 10. VTAM-Specific Requests and Responses 133
Subscribing to Association Information 133

Syntax for the Subscription Strings 133
Examples of Subscription Strings. 134
How the Subscription Strings Are Used 135

Registering an Application Entity 135
Syntax of the Registration Strings 136
Examples of RegisterAE Strings 136
How the Registration Strings Are Used 136

Starting Associations . 136
Syntax of the Associate Strings 137

Contents v

Examples of the Associate Strings 137
How the Associate Strings Are Used 137

Ending Associations . 137
Syntax of the ACF.Release and ACF.Abort Strings 138
Examples of the ACF.Release and ACF.Abort Strings 138
How the ACF.Release and ACF.Abort Strings Are Used 138

Getting Association Information 138
Syntax of the GetAssociationInfo String 138
Examples of the GetAssociationInfo String 139
How the GetAssociationInfo String Is Used 139

Creating a Dedicated Association. 140
Requests and Responses with the MIB Prefix 141

MIB.GeneralRequest, MIB.GeneralResponse, and MIB.GeneralError. . . . 141
MIB.ServiceError. 141
MIB.ServiceAccept . 141
MIB.RegisterAccept. 142

Chapter 11. Application-Program-to-Application-Program Security 143

Part 2. VTAM Topology Agent . 147

Chapter 12. Introduction to VTAM Topology Agent 149

Chapter 13. OSI Object Classes and VTAM Resources 151
OSI Object Classes. 151
Mapping VTAM Resources to OSI Object Classes 152
Naming the Objects. 152
OSI Object States . 155
Mapping VTAM Status to OSI States 156

OSI States for VTAM Resources with VTAM Status 157
OSI States for VTAM Resources without VTAM Native Status 158

Chapter 14. OSI Operations 161
Specifying OSI Operations with CMIP Verbs 161

GET . 161
CANCEL-GET. 162
ACTION . 162
SET . 162
DELETE . 162
Other Operations . 162

Responding to CMIP Requests 163
Responding to GET ROIV Messages 164
Responding to CANCEL-GET Messages 164
Responding to ACTION ROIV Messages 164
EVENT-REPORT, SET, and DELETE Messages 164

Monitoring Resources with the ACTION(snapshot) Operation 165
ACTION(snapshot) Request 165
ACTION(snapshot) Response 166
ACTION(snapshot) Initial Data. 168
ACTION(snapshot) Update Data 169
ACTION(snapshot) Update Merging. 170
ACTION(snapshot) Termination 171

Chapter 15. VTAM Topology Monitoring 173
Requesting and Monitoring Network Data (snaNetwork) 173

Overview . 173

vi z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Action Request . 173
Initial Data Response . 174
Update Data Response . 174
Action Termination . 175
snaNetwork Snapshot Data (APPN Data). 176
snaNetwork Snapshot Data (Subarea Data) 177
snaNetwork Snapshot Example 179

Requesting and Monitoring Local Topology (snaLocalTopo) 185
Overview . 186
Action Request . 187
Initial Data Response . 188
Update Data Response . 189
Action Termination . 191
snaLocalTopo Snapshot Data 192
snaLocalTopo Snapshot Example 197

Requesting and Monitoring LU Data (luCollection) 206
Overview . 206
Action Request . 207
Initial Data Response . 208
Update Data Response . 208
Action Termination . 210
luCollection Snapshot Data 210
luCollection (PU) Snapshot Example 211

Monitoring Resources through Event Reports 213
Overview . 213
Management of the Event Reporting Environment 213
Creation of the Event Forwarding Discriminator 213
Reporting Events to the Manager Application Program 214
Event Report Data . 215
Event Report Example . 216

Chapter 16. Requesting Specific Resource Data 219
Requesting Specific Resource Data (GET) 219

Overview . 219
GET Request . 219
Network-Qualified Names and GET Requests 221
GET Response . 222
GET Data . 223
GET Data Example . 223

Requesting Specific Resource Data (logicalUnitIndex) 224
Overview . 224
Action Request . 224
Initial Data Response . 225
Action Termination . 226
logicalUnitIndex Snapshot Data 226
logicalUnitIndex Snapshot Example 227

Part 3. Appendixes . 229

Appendix A. C Language Header File (ACYAPHDH) 231

Appendix B. ASN.1 Specification of the Basic CMIP Strings 241

Appendix C. Error Codes Sent by CMIP Services. 265
MIB.ServiceError Error Codes 265
CMER VIT Entry Error Codes 298

Contents vii

Appendix D. VTAM CMIP Services Compliance with Related Standards
and Profiles . 301

ISO Standards Documents . 301
ISO 9596-1 CMIP—Common Management Information Protocol 301
(ISO 10164-5) OSI Systems Management Part 5: Event Report Function 301
ISO 8650 ACSE—Association Control Service Element 301
ISO 8823 Presentation Layer 301
ISO 8825 BER—Basic Encoding Rules (BER) 301

ISO Standards Documents . 302
DISP 11183-1, AOM 10 . 302
DISP 11183-3, AOM 12 . 302
AOM221—General Event Report Management. 302

Appendix E. VTAM Topology Agent Object and Attribute Tables 303
VTAM-Supported Objects for snapshot Operations 303
Naming Attributes for snapshot Objects 303
VTAM-Supported Objects for snapshot Responses 303
VTAM-Supported Attributes for snapshot Responses 303
VTAM-Supported Objects for GET Operation 304
VTAM-Supported Attributes for GET Operation 304

Appendix F. VTAM Topology Agent Attributes Definition 315
abmSupported . 315
adapterAddresses . 315
adapterNumbers . 316
adjacentLinkStationAddress. 317
adjacentNodeName. 318
adjacentNodeType . 319
administrativeState . 320
allomorphs . 320
appnNodeCapabilities . 321
appnTGcapabilities . 322
attachedCircuitList . 323
availabilityStatus . 323
cdrscRealLUname . 324
connectionID . 324
connectionType . 325
cp-cpSessionSupport . 325
definitionGroupName . 326
dependencies . 327
dlcName . 328
dlurList . 328
dlurLocalLsAddress . 329
dlurName . 329
endpointForArc . 329
erList . 329
extendedAppnNodeCapabilities 330
functionID . 330
gatewayNode . 330
gatewaySSCP. 331
interconnectedNetids . 331
limitedResource . 332
limitedResourceTimeout . 332
lineType . 332
linkName . 332
linkStationRole . 333

viii z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

luGroupMembers . 333
luGroupName . 333
luGroupSize . 334
luSecondName . 334
maxBTUsize . 334
nameBinding . 335
nativeStatus . 335
nlrResidentNodePointer . 336
nnServerPointer . 336
nonLocalResourceName . 336
nonLocalResourceType . 337
objectClass . 337
opEquipmentList . 337
opNetworkName . 338
operationalState . 338
packages . 339
partnerConnection . 339
portId . 339
proceduralStatus . 340
puName . 340
receiveWindowSize . 341
realSSCPname . 341
registeredBy . 341
relatedAdapter . 341
residentNodePointer . 342
resourceSequenceNumber . 342
routeAdditionResistance . 342
sendWindowSize. 343
snaNodeName . 343
softwareList . 343
subareaAddress . 344
subareaLimit . 344
supportedResources . 344
sysplexInfo . 345
tn3270ClientDnsName. 345
tn3270ClientIpAddress . 345
tn3270ClientPortNumber . 346
transmissionGroupNumber . 346
underlyingConnectionNames 346
userLabel . 347
unknownStatus . 347
usageState . 348

Appendix G. VTAMTOPO Filtering Option Reporting 349

Appendix H. Information Apars 353
IP Information Apars . 353
SNA Information Apars . 354

Appendix I. Notices . 355
Programming Interface Information 357
Trademarks. 358

Index . 361

Contents ix

x z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Figures

1. Using CMIP Services with the Common Storage Area Interface. 42
2. Using CMIP Services with the Data Space Interface 42
3. Format of API Messages . 45
4. Defining a Bit String Field . 117
5. Application-Program-to-Application-Program Security 144
6. Distinguished Name Composed of Three Relative Distinguished Names 153

© Copyright IBM Corp. 1995, 2001 xi

xii z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Tables

1. Destination and Source Fields in String Headers 48
2. API Functions: Module Entry Point, Type, and Where to Find More Information 53
3. VIT Entries for Each API Function . 55
4. Valid Characters for NumericString . 110
5. Valid Characters for PrintableString. 110
6. Valid Characters for GraphicString and ISO646String 110
7. Order and Members of Constructed Types . 112
8. VTAM Resources Mapped to OSI Classes . 152
9. Object Names and Shorthand Distinguished Names 153

10. VTAM Resource Status to OSI States. 157
11. OSI States for VTAM Resources without Native Status 158
12. vertex1 Entries for CDRM Reported Objects . 178
13. Resources with Reason for snaLocalTopo Update Data 190
14. Reported Resources for luCollection (Host) Initial Data 208
15. Reported Resources for luCollection (PU) Initial Data 208
16. Resources with Reason for luCollection (Host) Update Data 208
17. Resources with Reason for luCollection (PU) Update Data 209
18. Attributes for luCollection (Host) Reported Objects 210
19. Attributes for luCollection (PU) Reported Objects 211
20. Reported Resources for logicalUnitIndex Data 225
21. Attributes for logicalUnitIndex Reported Objects 227
22. Supported Object Classes for snapshot . 303
23. Naming Attributes for snapshot Objects . 303
24. Unique Objects for snapshot Response . 303
25. Unique Attributes for snapshot Response . 303
26. Supported Object Classes for GET. 304
27. CDRSC Attribute Table . 304
28. Definition Group Attribute Table . 305
29. APPN End Node Attribute Table . 305
30. Interchange Node Attribute Table . 306
31. Low-Entry Networking Node Attribute Table. 307
32. Logical Link Attribute Table. 307
33. Logical Unit Attribute Table . 308
34. LU Group Attribute Table . 309
35. Migration Data Host Node Attribute Table . 309
36. APPN Network Node Attribute Table . 310
37. Port Attribute Table . 310
38. APPN Registered LU Attribute Table . 311
39. Type 2.1 Node Attribute Table . 312
40. Type 4 Node Attribute Table . 312
41. Type 5 Node Attribute Table . 313
42. Connected Switched PU Report . 349
43. IP Information Apars . 353
44. SNA Information Apars . 354

© Copyright IBM Corp. 1995, 2001 xiii

xiv z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

About This Book

This book describes programming concepts and CMIP API functions that help
application programmers write Common Management Information Protocol (CMIP)
application programs that use VTAM CMIP services.

Use this book if you are planning to write a manager or agent application program
that uses VTAM CMIP services or the VTAM topology agent application program.

Before using this book, you should be familiar with the basic concepts of
telecommunication, SNA, and VTAM. You should also be familiar with the following:
v C language programming
v Object-oriented terminology
v OSI network management

You should be familiar with the information in the z/OS Communications Server:
SNA Migration. The z/OS Communications Server: SNA Migration contains an
overview of CMIP services and the VTAM topology agent, including information
about what these functions enable you to do and how to plan for these functions.
This book gives you the new and changed user interfaces that enable you to use
each function.

Where to Find More Information
This section contains:

v Pointers to information available on the Internet

v Information about licensed documentation

v Information about LookAt, the online message tool

v A set of tables that describes the books in the z/OS Communications Server
(z/OS CS) library, along with related publications

Where to Find Related Information on the Internet
Home Page Web address
z/OS http://www.ibm.com/servers/eserver/zseries/zos/
z/OS Internet Library

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
IBM Communications Server product

http://www.software.ibm.com/network/commserver/
IBM Communications Server support

http://www.software.ibm.com/network/commserver/support/
IBM Systems Center publications

http://www.redbooks.ibm.com/
IBM Systems Center flashes

http://www-1.ibm.com/support/techdocs/atsmastr.nsf
VTAM and TCP/IP

http://www.software.ibm.com/network/commserver/about/csos390.html
IBM http://www.ibm.com
RFC http://www.ietf.org/rfc.html

Information about Web addresses can also be found in informational APAR II11334.

DNS Web Sites
For information about DNS, see the following Web sites:

© Copyright IBM Corp. 1995, 2001 xv

http://www.ibm.com/servers/eserver/zseries/zos/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/
http://www.ibm.com/redbooks
http://www.ibm.com/support/techdocs
http://www.software.ibm.com/network/commserver/about/csos390.html
http://www.ibm.com
http://www.rfc-editor.org/rfc.html

USENET news groups:
comp.protocols.dns.bind

For BIND mailing lists, see:

v http://www.isc.org/ml-archives/

– BIND Users

- Subscribe by sending mail to bind-users-request@isc.org

- Submit questions or answers to this forum by sending mail to
bind-users@isc.org

– BIND 9 Users (Note: This list may not be maintained indefinitely.)

- Subscribe by sending mail to bind9-users-request@isc.org

- Submit questions or answers to this forum by sending mail to
bind9-users@isc.org

For definitions of the terms and abbreviations used in this book, you can view or
download the latest IBM Glossary of Computing Terms at the following Web
address:

http://www.ibm.com/ibm/terminology

Note: Any pointers in this publication to Web sites are provided for convenience
only and do not in any manner serve as an endorsement of these Web sites.

Licensed Documents
z/OS Communications Server licensed documentation in PDF format is available on
the Internet at the IBM Resource Link Web site at
http://www.ibm.com/servers/resourcelink. Licensed books are available only to
customers with a z/OS Communications Server license. Access to these books
requires an IBM Resource Link Web user ID and password, and a key code. With
your z/OS Communications Server order, you received a memo that includes this
key code. To obtain your IBM Resource Link Web user ID and password, log on to
http://www.ibm.com/servers/resourcelink. To register for access to the z/OS licensed
books perform the following steps:

1. Log on to Resource Link using your Resource Link user ID and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code, you will receive confirmation that your request
is being processed. After your request is processed, you will receive an e-mail
confirmation.

You cannot access the z/OS licensed books unless you have registered for access
to them and received an e-mail confirmation informing you that your request has
been processed. To access the licensed books:

1. Log on to Resource Link using your Resource Link user ID and password.

2. Click on Library.

3. Click on zSeries.

4. Click on Software.

5. Click on z/OS Communications Server.

6. Access the licensed book by selecting the appropriate element.

xvi z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

http://www.ibm.com/ibm/terminology
www.ibm.com/servers/resourcelink
www.ibm.com/servers/resourcelink

LookAt, an Online Message Help Facility
LookAt is an online facility that allows you to look up explanations for z/OS CS
messages and system abends.

Using LookAt to find information is faster than a conventional search because
LookAt goes directly to the explanation.

LookAt can be accessed from the Internet or from a TSO command line.

To use LookAt as a TSO command, LookAt must be installed on your host system.
You can obtain the LookAt code for TSO from the LookAt Web site by clicking on
News and Help or from the z/OS V1R2 Collection, SK3T-4269.

To find a message explanation from a TSO command line, simply enter
lookat+message ID, as in the following example:
lookat ezz8477i

This results in direct access to the message explanation for message EZZ8477I.

You can use LookAt on the Internet at the following Web site:
www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To find a message explanation from the LookAt Web site, simply enter the message
ID. You can select the release, if applicable.

How to Contact IBM® Service
For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-237-5511).
You will receive a return call within 8 business hours (Monday – Friday, 8:00 a.m. –
5:00 p.m., local customer time).

Outside of the United States or Puerto Rico, contact your local IBM representative
or your authorized IBM supplier.

z/OS Communications Server Information
This section contains descriptions of the books in the z/OS Communications Server
library.

z/OS Communications Server publications are available:

v Online at the z/OS Internet Library web page at
http://www.ibm.com/servers/eserver/zseries/zos/

v In hardcopy and softcopy

v In softcopy only

Softcopy Information
Softcopy publications are available in the following collections:

Titles Order
Number

Description

z/OS V1R2 Collection SK3T-4269 This is the CD collection shipped with the z/OS product. It includes
the libraries for z/OS V1R2, in both BookManager and PDF formats.

About This Book xvii

www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/eserver/zseries/zos/

Titles Order
Number

Description

z/OS Software Products
Collection

SK3T-4270 This CD includes, in both BookManager and PDF formats, the
libraries of z/OS software products that run on z/OS but are not
elements and features, as well as the Getting Started with Parallel
Sysplex bookshelf.

z/OS V1R2 and Software
Products DVD Collection

SK3T-4271 This collection includes the libraries of z/OS (the element and
feature libraries) and the libraries for z/OS software products in both
BookManager and PDF format. This collection combines SK3T-4269
and SK3T-4270.

z/OS Licensed Product Library SK3T-4307 This CD includes the licensed books in both BookManager and PDF
format.

System Center Publication
IBM S/390 Redbooks
Collection

SK2T-2177 This collection contains over 300 ITSO redbooks that apply to the
S/390 platform and to host networking arranged into subject
bookshelves.

z/OS Communications Server Library
The following abbreviations follow each order number in the tables below.

HC/SC — Both hardcopy and softcopy are available.

SC — Only softcopy is available. These books are available on the CD Rom
accompanying z/OS (SK3T-4269 or SK3T-4307). Unlicensed books can be viewed
at the z/OS Internet library site.

Updates to books are available on RETAIN and in the document called OS/390
DOC APARs and ++HOLD DOC data which can be found at
http://www.s390.ibm.com/os390/bkserv/ new_tech_info.html. See “Appendix H.
Information Apars” on page 353 for a list of the books and the informational apars
(info apars) associated with them.

Planning and Migration:

Title Number Format Description

z/OS Communications
Server: SNA Migration

GC31-8774 HC/SC This book is intended to help you plan for SNA, whether
you are migrating from a previous version or installing
SNA for the first time. This book also identifies the
optional and required modifications needed to enable
you to use the enhanced functions provided with SNA.

z/OS Communications
Server: IP Migration

GC31-8773 HC/SC This book is intended to help you plan for TCP/IP
Services, whether you are migrating from a previous
version or installing IP for the first time. This book also
identifies the optional and required modifications needed
to enable you to use the enhanced functions provided
with TCP/IP Services.

Resource Definition, Configuration, and Tuning:

xviii z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

http://www.s390.ibm.com/os390/bkserv/new_tech_info.html

Title Number Format Description

z/OS Communications
Server: IP Configuration
Guide

SC31-8775 HC/SC This book describes the major concepts involved in
understanding and configuring an IP network. Familiarity
with the z/OS operating system, IP protocols, z/OS
UNIX System Services, and IBM Time Sharing Option
(TSO) is recommended. Use this book in conjunction
with the z/OS Communications Server: IP Configuration
Reference.

z/OS Communications
Server: IP Configuration
Reference

SC31-8776 HC/SC This book presents information for people who want to
administer and maintain IP. Use this book in conjunction
with the z/OS Communications Server: IP Configuration
Guide. The information in this book includes:

v TCP/IP configuration data sets

v Configuration statements

v Translation tables

v SMF records

v Protocol number and port assignments

z/OS Communications
Server: SNA Network
Implementation Guide

SC31-8777 HC/SC This book presents the major concepts involved in
implementing an SNA network. Use this book in
conjunction with the z/OS Communications Server: SNA
Resource Definition Reference.

z/OS Communications
Server: SNA Resource
Definition Reference

SC31-8778 HC/SC This book describes each SNA definition statement,
start option, and macroinstruction for user tables. It also
describes NCP definition statements that affect
SNA.Use this book in conjunction with the z/OS
Communications Server: SNA Network Implementation
Guide.

z/OS Communications
Server: SNA Resource
Definition Samples

SC31-8836 SC This book contains sample definitions to help you
implement SNA functions in your networks, and includes
sample major node definitions.

z/OS Communications
Server: AnyNet SNA over
TCP/IP

SC31-8832 SC This guide provides information to help you install,
configure, use, and diagnose SNA over TCP/IP.

z/OS Communications
Server: AnyNet Sockets
over SNA

SC31-8831 SC This guide provides information to help you install,
configure, use, and diagnose sockets over SNA. It also
provides information to help you prepare application
programs to use sockets over SNA.

Operation:

Title Number Format Description

z/OS Communications
Server: IP User’s Guide and
Commands

SC31-8780 HC/SC This book describes how to use TCP/IP applications. It
contains requests that allow a user to: log on to a
remote host using Telnet, transfer data sets using FTP,
send and receive electronic mail, print on remote
printers, and authenticate network users.

z/OS Communications
Server: IP System
Administrator’s Commands

SC31-8781 HC/SC This book describes the functions and commands
helpful in configuring or monitoring your system. It
contains system administrator’s commands, such as
NETSTAT, PING, TRACERTE and their UNIX
counterparts. It also includes TSO and MVS commands
commonly used during the IP configuration process.

About This Book xix

Title Number Format Description

z/OS Communications
Server: SNA Operation

SC31-8779 HC/SC This book serves as a reference for programmers and
operators requiring detailed information about specific
operator commands.

z/OS Communications
Server: Operations Quick
Reference

SX75-0124 HC/SC This book contains essential information about SNA and
IP commands.

Customization:

Title Number Format Description

z/OS Communications
Server: SNA Customization

LY43-0092 SC This book enables you to customize SNA, and includes
the following:

v Communication network management (CNM) routing
table

v Logon-interpret routine requirements

v Logon manager installation-wide exit routine for the
CLU search exit

v TSO/SNA installation-wide exit routines

v SNA installation-wide exit routines

z/OS Communications
Server: IP Network Print
Facility

SC31-8833 SC This book is for system programmers and network
administrators who need to prepare their network to
route SNA, JES2, or JES3 printer output to remote
printers using TCP/IP Services.

Writing Application Programs:

Title Number Format Description

z/OS Communications
Server: IP Application
Programming Interface
Guide

SC31-8788 SC This book describes the syntax and semantics of
program source code necessary to write your own
application programming interface (API) into TCP/IP.
You can use this interface as the communication base
for writing your own client or server application. You can
also use this book to adapt your existing applications to
communicate with each other using sockets over
TCP/IP.

z/OS Communications
Server: IP CICS Sockets
Guide

SC31-8807 SC This book is for people who want to set up, write
application programs for, and diagnose problems with
the socket interface for CICS using z/OS TCP/IP.

z/OS Communications
Server: IP IMS Sockets
Guide

SC31-8830 SC This book is for programmers who want application
programs that use the IMS TCP/IP application
development services provided by IBM’s TCP/IP
Services.

z/OS Communications
Server: IP Programmer’s
Reference

SC31-8787 SC This book describes the syntax and semantics of a set
of high-level application functions that you can use to
program your own applications in a TCP/IP
environment. These functions provide support for
application facilities, such as user authentication,
distributed databases, distributed processing, network
management, and device sharing. Familiarity with the
z/OS operating system, TCP/IP protocols, and IBM Time
Sharing Option (TSO) is recommended.

xx z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Title Number Format Description

z/OS Communications
Server: SNA Programming

SC31-8829 SC This book describes how to use SNA macroinstructions
to send data to and receive data from (1) a terminal in
either the same or a different domain, or (2) another
application program in either the same or a different
domain.

z/OS Communications
Server: SNA Programmers
LU 6.2 Guide

SC31-8811 SC This book describes how to use the SNA LU 6.2
application programming interface for host application
programs. This book applies to programs that use only
LU 6.2 sessions or that use LU 6.2 sessions along with
other session types. (Only LU 6.2 sessions are covered
in this book.)

z/OS Communications
Server: SNA Programmers
LU 6.2 Reference

SC31-8810 SC This book provides reference material for the SNA LU
6.2 programming interface for host application
programs.

z/OS Communications
Server: CSM Guide

SC31-8808 SC This book describes how applications use the
communications storage manager.

z/OS Communications
Server: CMIP Services and
Topology Agent Guide

SC31-8828 SC This book describes the Common Management
Information Protocol (CMIP) programming interface for
application programmers to use in coding CMIP
application programs. The book provides guide and
reference information about CMIP services and the SNA
topology agent.

Diagnosis:

Title Number Format Description

z/OS Communications
Server: IP Diagnosis

GC31-8782 HC/SC This book explains how to diagnose TCP/IP problems
and how to determine whether a specific problem is in
the TCP/IP product code. It explains how to gather
information for and describe problems to the IBM
Software Support Center.

z/OS Communications
Server: SNA Diagnosis Vol
1 Techniques and
Procedures and z/OS
Communications Server:
SNA Diagnosis Vol 2 FFST
Dumps and the VIT

LY43-0088

LY43-0089

HC/SC These books help you identify an SNA problem, classify
it, and collect information about it before you call the
IBM Support Center. The information collected includes
traces, dumps, and other problem documentation.

z/OS Communications
Server: SNA Data Areas
Volume 1 and z/OS
Communications Server:
SNA Data Areas Volume 2

LY43-0090

LY43-0091

SC These books describe SNA data areas and can be used
to read an SNA dump. They are intended for IBM
programming service representatives and customer
personnel who are diagnosing problems with SNA.

Messages and Codes:

About This Book xxi

Title Number Format Description

z/OS Communications
Server: SNA Messages

SC31-8790 HC/SC This book describes the ELM, IKT, IST, ISU, IUT, IVT,
and USS messages. Other information in this book
includes:

v Command and RU types in SNA messages

v Node and ID types in SNA messages

v Supplemental message-related information

z/OS Communications
Server: IP Messages
Volume 1 (EZA)

SC31-8783 HC/SC This volume contains TCP/IP messages beginning with
EZA.

z/OS Communications
Server: IP Messages
Volume 2 (EZB)

SC31-8784 HC/SC This volume contains TCP/IP messages beginning with
EZB.

z/OS Communications
Server: IP Messages
Volume 3 (EZY)

SC31-8785 HC/SC This volume contains TCP/IP messages beginning with
EZY.

z/OS Communications
Server: IP Messages
Volume 4 (EZZ-SNM)

SC31-8786 HC/SC This volume contains TCP/IP messages beginning with
EZZ and SNM.

z/OS Communications
Server: IP and SNA Codes

SC31-8791 HC/SC This book describes codes and other information that
appear in z/OS Communications Server messages.

APPC Application Suite:

Title Number Format Description

z/OS Communications
Server: APPC Application
Suite User’s Guide

GC31-8809 SC This book documents the end-user interface (concepts,
commands, and messages) for the AFTP, ANAME, and
APING facilities of the APPC application suite. Although
its primary audience is the end user, administrators and
application programmers may also find it useful.

z/OS Communications
Server: APPC Application
Suite Administration

SC31-8835 SC This book contains the information that administrators
need to configure the APPC application suite and to
manage the APING, ANAME, AFTP, and A3270 servers.

z/OS Communications
Server: APPC Application
Suite Programming

SC31-8834 SC This book provides the information application
programmers need to add the functions of the AFTP
and ANAME APIs to their application programs.

Redbooks
The following Redbooks may help you as you implement z/OS Communications
Server.

Title Number

TCP/IP Tutorial and Technical Overview GG24–3376

SNA and TCP/IP Integration SG24–5291

IBM Communication Server for OS/390 V2R10 TCP/IP Implementation Guide:
Volume 1: Configuration and Routing

SG24–5227

IBM Communication Server for OS/390 V2R10 TCP/IP Implementation Guide:
Volume 2: UNIX Applications

SG24–5228

IBM Communication Server for OS/390 V2R10 TCP/IP Implementation Guide:
Volume 3: MVS Applications

SG24–5229

OS/390 Secureway Communication Server V2R8 TCP/IP Guide to Enhancements SG24–5631

xxii z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Title Number

TCP/IP in a Sysplex SG24–5235

Managing OS/390 TCP/IP with SNMP SG24–5866

Security in OS/390–based TCP/IP Networks SG24–5383

IP Network Design Guide SG24–2580

Related Information
For information about z/OS products, refer to z/OS Information Roadmap
(SA22-7500). The Roadmap describes what level of documents are supplied with
each release of z/OS Communications Server, as well as describing each z/OS
publication.

The table below lists books that may be helpful to readers.

Title Number

z/OS SecureWay Security Server Firewall Technologies SC24-5922

S/390: OSA-Express Customer’s Guide and Reference SA22-7403

z/OS MVS Diagnosis: Procedures GA22-7587

z/OS MVS Diagnosis: Reference GA22-7588

z/OS MVS Diagnosis: Tools and Service Aids GA22-7589

Determining If a Publication Is Current
As needed, IBM updates its publications with new and changed information. For a
given publication, updates to the hardcopy and associated BookManager softcopy
are usually available at the same time. Sometimes, however, the updates to
hardcopy and softcopy are available at different times. Here is how to determine if
you are looking at the most current copy of a publication:

1. At the end of a publication’s order number there is a dash followed by two
digits, often referred to as the dash level. A publication with a higher dash level
is more current than one with a lower dash level. For example, in the publication
order number GC28-1747-07, the dash level 07 means that the publication is
more current than previous levels, such as 05 or 04.

2. If a hardcopy publication and a softcopy publication have the same dash level, it
is possible that the softcopy publication is more current than the hardcopy
publication. Check the dates shown in the Summary of Changes. The softcopy
publication might have a more recently dated Summary of Changes than the
hardcopy publication.

3. To compare softcopy publications, you can check the last two characters of the
publication’s filename (also called the book name). The higher the number, the
more recent the publication. Also, next to the publication titles in the CD-ROM
booklet and the readme files, there is an asterisk (*) that indicates whether a
publication is new or changed.

About This Book xxiii

xxiv z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Summary of Changes

Summary of Changes
for SC31-8828-01
z/OS Version 1 Release 2

This book contains minor editorial changes.

Summary of Changes
for SC31-8828-00
z/OS Version 1 Release 2

This book contains information previously presented in OS/390 V2R10 eNetwork
Communications Server: CMIP Services and Topology Agent Guide, SC31-8576.

New Information

v DlurLocalLsAddress, tn3270ClientDnsName, tn3270ClientIpAddress, and
tn3270ClientPortNumber attributes in “Appendix F. VTAM Topology Agent
Attributes Definition” on page 315.

Changed Information

v VTAM Resources to OSI States Table to include LU active-disable (eui-po)

v OSI States for VTAM Resources without Native Status Table to include udi-ol

v Event Reports section with description for support of attribute value change
notifications

This book contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

© Copyright IBM Corp. 1995, 2001 xxv

|
|
|

|
|
|

|
|

|

|

|

|

|
|

xxvi z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Part 1. VTAM CMIP Services

© Copyright IBM Corp. 1995, 2001 1

2 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Chapter 1. Introduction to Object Orientation and CMIP
Services

VTAM Common Management Information Protocol (CMIP) Services provides an
open, standards-based access for network and systems management. Application
programmers can use CMIP services to code manager and agent application
programs to aid in systems management.

In pre-V4R3 releases of VTAM without CMIP, network application programs, such
as the NetView program, are frequently limited by two restrictions:

v They rely on the VTAMLST data set for information about the location of
resources within the network.

The VTAMLST data set gives an incomplete picture of the network because
VTAMLST includes only resources that are pre-defined. It does not include
APPN* or subarea resources that are dynamically defined.

v They must reside with VTAM on the host.

Because topology information cannot be gathered and sent to the NetView
program at a remote location, the NetView program must reside with VTAM on
the host.

With CMIP these two restrictions no longer apply for topology management. The
VTAM topology agent is a part of VTAM that functions as a CMIP application
program. Together with a manager application program, such as the NetView
program, the topology agent provides data for the management of APPN and
subarea topology. For a description of the VTAM topology agent, refer to
“Chapter 12. Introduction to VTAM Topology Agent” on page 149. A manager
application program is any CMIP application program that sends requests to other
objects. An agent application program is any CMIP application program that
processes requests from other objects.

You can write your own manager or agent application program by using the CMIP
services application program interface (API). These application programs need are
not restricted to system management, VTAM, or SNA resources. For example, you
can write an agent application program for the MVS system.

Object-Oriented View of Resources
CMIP network management uses an object-oriented view of the resources in the
network to simplify management.

This object-oriented system emphasizes the common properties of resources and
reduces the requirement for a manager application program to understand all
details of every type of resource in the network. Information about different network
resources are represented by agent application programs in a common language,
composed of CMIP strings. Manager application programs use this common
language to communicate with agent application programs.

A user of a network management program issues commands to a manager
application program, which sends CMIP requests to a network resource. Resources
are represented by agent application programs, which accept the request and build
information about the network resource in the form of a CMIP response. The CMIP
response is returned to the manager application program.

© Copyright IBM Corp. 1995, 2001 3

In VTAM CMIP services, managed network resources are called objects. An object
is an instance of one or more classes. A CMIP class describes a type of resource
in the network and specifies the properties that are common to instances of the
class.

A CMIP class is described in GDMO templates. These templates are sets of
declarations written in the GDMO language that describe one or more classes. The
descriptions include properties of the objects in that class, such as:
v How the object is named
v What types of requests are valid for this object
v What attributes (characteristics) describe this object.

Inheritance is the mechanism used in object-oriented systems to simplify
interactions with objects by emphasizing common properties. A class can inherit
characteristics or traits from one or more other classes. To inherit means to have all
behaviors of another class. The class that inherits is a subclass of the class it
inherits from. The class that is inherited from is the superclass of the class that
inherits from it.

A subclass has all the behaviors of its superclass because it inherits from the
superclass. In addition, a subclass has unique behaviors of its own.

Relationship between CMIP Services and Local Application Programs
Local application programs are CMIP application programs that reside with CMIP
services on the host.

Local agent and manager CMIP application programs use character strings to
represent requests and responses that flow between manager application programs
and agent application programs.

The formats of CMIP requests and responses are described by syntaxes that are
written in the ASN.1 language. The ASN.1 language describes data formats.

All requests and responses sent between CMIP services and local application
programs are EBCDIC strings formatted according to string syntaxes written in the
ASN.1 language, as shown in this simple syntax example:
StringA ::= SEQUENCE

{
level INTEGER,
id CHARACTER

}

The syntax in the example is the rule for building a string of type StringA. Using that
syntax and the ASN.1 standard, an application program can build a string of type
StringA.

The following strings are examples of StringA strings:
(level 5, id 'A')
(level 1355, id 'Z')
(1244, M)

For more information on interpreting ASN.1 syntaxes, refer to “Chapter 7. Rules for
Constructing Standard CMIP Strings” on page 95.

Introduction to OO and CMIP Services

4 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Relationship between CMIP Services and Remote Management
Systems

When CMIP requests and responses flow through the network, they are encoded in
a hardware-independent format. CMIP services is available on machines with
different word sizes (16-bit and 32-bit, for example) and different character string
representations (ASCII and EBCDIC). This is hidden from application programs and
from CMIP services because CMIP services encodes data from native format to a
common format when it sends data across the network. It decodes data from the
common format to native format when it receives data from the network.

Basic Encoding Rules (BER) is the common format that is used to encode CMIP
information as it flows through the network. BER is not used between local agent
application programs and manager application programs.

Overview of CMIP Services
VTAM CMIP services is designed to provide information through VTAM to network
and systems management application programs that conform to the OSI standards
for systems management. CMIP services provides application writers a set of
common functions that can be used to create CMIP agent and manager application
programs more quickly than would otherwise be possible.

The relationship between CMIP agent and manager application programs is defined
by the International Standards Organization (ISO) in terms of a managing system
and a managed system. The managing system is the CMIP manager application
program and the managed system is the CMIP agent application program.

With the functions provided by CMIP services, application programmers can write
application programs that monitor resources in a network. Through CMIP services,
a topology agent application program sends information about resources in the
network to a topology manager application program that analyzes and displays the
resources.

The VTAM topology agent, which resides on the VTAM host, is an agent application
program that collects topology information to send to a manager application
program through CMIP services. For information about the VTAM topology agent,
refer to “Chapter 12. Introduction to VTAM Topology Agent” on page 149.
Communication between the manager and agent application programs that are on
different systems is over APPC sessions using Open System Interconnection (OSI)
Common Management Information Protocol (CMIP) and Systems Network
Architecture (SNA). For more information on CMIP over SNA, refer to IBM
SystemView Mapping of OSI Upper Layers to MDS for CMIP over SNA for APPN
and SNA Subarea Management.

CMIP services enables communication between application programs by performing
several functions for the application programs. The following sections describe
these CMIP services tasks:
v Locates objects
v Registers objects
v Coordinates traffic
v Replicates scoped requests
v Filters events and routes them to manager application programs
v Provides security
v Creates and ends associations

Introduction to OO and CMIP Services

Chapter 1. Introduction to Object Orientation and CMIP Services 5

v Manages associations
v Manages protocol data units (PDUs)
v Supports CMIP verbs and parameters.

Locates Objects
CMIP services allows your application program to target CMIP requests to local or
remote objects without knowing where the objects reside, what their application
entity titles are, or what their associations are. The directory resolves the object
locations. Application programs can use the same code for local objects and for
remote objects.

CMIP services maps an object instance, represented by its distinguished name, to
the application entity title of the application entity that can be used to contact that
object instance.

CMIP services performs the following tasks:

v Maps distinguished names to application entity titles by using a locally defined
directory and either of the following methods:

– Mappings (as defined by either the ACYDDF member of the SYS1.SISTCMIP
data set or a CMIP algorithm) for distinguished names of specific formats to
the application entity title that represents the distinguished name.

– User-defined mappings for distinguished names of specific formats to the
application entity title that represents the distinguished name and from
application entity title to session address. See z/OS Communications Server:
SNA Network Implementation Guide and z/OS Communications Server: SNA
Resource Definition Reference for more information about user-defined
mappings.

v Maps names to application entity titles by using a locally defined directory.

CMIP application programs can rely on CMIP services to provide this mapping. The
application programs address the objects by their distinguished names only.

Only one mapping is allowed. You cannot define more than one application entity
title for each distinguished name and cannot target more than one target system
per application entity title.

Registers Objects
CMIP services supports both manager and agent application programs. Any
application program can act as both manager and agent. Each application program
must have at least one object that it registers with CMIP services.

VTAM implements an instance of a system object defined by ISO/IEC 10165-2. The
system object can be used by an application program to register subordinate
objects if the name binding defined for the subordinate objects allows this. CMIP
services provides the distinguished name of the local system object on return from
the MIBConnect function (the CMIP services connection function) so that application
programs can register subordinate objects to this system.

This distinguished name is especially useful if you are registering objects that are in
the managerApplication class. Any application program choosing not to register
under this system object can either register its own root object or can register under
any currently registered object. CMIP services does not accept registration under
non-existent managed objects. Instances can be registered under directory objects,
which are created dynamically, or they can be registered under the root object.

Introduction to OO and CMIP Services

6 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

The local system object is created when VTAM CMIP services is initialized and is
therefore registered so long as VTAM CMIP services is active. As a result, this
object provides a predictable, reliable anchor for creating and registering objects. It
is highly recommended that event filter discriminator (EFD) objects be created
under this system object. EFD objects are described in more detail under “Filters
and Routes Events” and “Special Considerations for Topology Manager Application
Programs” on page 14.

CMIP services verifies proper names for object instances during object registration.

Because CMIP services is the only function that is aware of the tree structure for
naming object instances, it processes scoped requests by replicating the incoming
message for each object in the subtree specified by the scoping criteria. It does not
filter messages.

When an object with multiple name bindings registers, CMIP services assigns it the
first name binding it finds.

Coordinates Traffic
CMIP services coordinates CMIP traffic within a local system. It includes an
application program interface (API) and a management information base (MIB).

The MIB includes objects. CMIP services allows the local MIB to be used by
several application programs. Each application program can implement one or more
objects that comprise the MIB. The complete MIB is made up of all of the objects
registered by the application programs. The CMIP application programs that use the
MIB are called the agents or managers for the system.

Manager application programs do not have to understand where objects are located
because VTAM directs the requests to the objects. Responses are matched with the
requests and returned to the originator.

Replicates Scoped Requests
Requests that affect several application programs (or objects) within a particular
scope are called scoped requests. Scoped requests are coordinated such that
CMIP services provides the appropriate end responses when the affected objects
have responded. CMIP services replicates scoped requests and directs them to the
objects within each application program that fall within the scope of the request.
Manager application programs on CMIP services can rely on CMIP services to find
the base affected objects and deliver the request to the system containing that base
object. At the receiving system, CMIP services delivers copies of the request to
each affected object, coordinates the responses, and forwards the responses.

Filters and Routes Events
CMIP services filters events to forward them to any manager application programs
that have indicated they want to see these events. The event reports contain
information sent by a managed object relating to an event that has occurred within
the managed object, such as a threshold violation or a change in configuration
status.

Notifications are the conceptual messages that are sent by object instances to
CMIP services. They do not have a destination initially. Notifications are specified
using the notification syntax contained in “Appendix B. ASN.1 Specification of the
Basic CMIP Strings” on page 241. These messages are processed by CMIP

Introduction to OO and CMIP Services

Chapter 1. Introduction to Object Orientation and CMIP Services 7

services and if there is an EFD object with a filter that matches that notification,
they are converted into event reports that contain destinations.

In the case of inbound event reports destined for OSISMASE from CMIP services
on products other than VTAM, CMIP services filters and routes event reports so that
they can be forwarded to specific objects within the local system or to remote
systems.

OSISMASE is the default application entity title for CMIP services. For information
about OSISMASE, refer to IBM SystemView Mapping of OSI Upper Layers to MDS
for CMIP over SNA for APPN and SNA Subarea Management. Inbound event
reports targeted at application entities other than OSISMASE are routed directly to
the object that registered the application entity.

VTAM CMIP services does not allow the creation of EFDs that reside in VTAM to
specify OSISMASE as a destination. CMIP services on other products might allow
OSISMASE as a destination.

Object instances do not have to be aware of destinations and filters for events
because CMIP services does that.

CMIP services receives all notifications that are either sent by local object instances
or received from other systems. CMIP services compares their attributes against
matching criteria specified in each instance of the EFD managed object. For each
EFD, if no match is found, the message is discarded. If a match is found, the
destination specified in the event forwarding discriminator is attached to the
message and it is processed further. The notification is converted to an unconfirmed
event report. If eventTime was provided in the notification, it is copied to the event
report, otherwise an eventTime is generated and included. The event report is sent
to each destination in the destination list.

For a description of how a manager application program creates EFDs, refer to
“Special Considerations for Topology Manager Application Programs” on page 14.

CMIP services performs a set of functions common to all members of the EFD
object class.

It also performs the functions defined in the IBM* EFD subclass for allomorphic
behavior of events. These functions are defined in IBM SystemView Managed
Resource Model Reference and Templates, Volume 1: Generic Definitions. To
support this additional behavior, each object instance that sends notifications must
use the notification syntax to include with each notification the set of allomorphic
superclasses that the object instance supports.

Confirmed event reports are not supported. When CMIP services receives a
confirmed notification or a confirmed event report, CMIP services builds an ROER
processing failure with no specific information.

EFD attributes that specify scheduling are ignored.

Objects can choose to register as individual application entities. If an application
program registers as an application entity, then any event reports destined for that
application entity are forwarded directly to that application program. Any event
reports destined for the default application entity (OSISMASE) are routed to the
local CMIP services. The creation of EFDs with a destination of OSISMASE is not
valid and might be rejected by CMIP services.

Introduction to OO and CMIP Services

8 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

To learn about registering application entity titles, refer to “Registering an
Application Entity” on page 135.

Provides Security
CMIP services provides two kinds of security. One kind of security is between
association partners. It verifies that association partners have proper authorization
to be in communication with each other. This kind of security defines which
manager and agent application programs can communicate with each other. The
system administrator controls this access by defining either only those partners that
are allowed to request management functions or those that are to be specifically
excluded. Wildcards and defaults can be used.

See z/OS Communications Server: SNA Network Implementation Guide and z/OS
Communications Server: SNA Resource Definition Reference for more information
about this type of security.

The other kind of security is across the API. The API security restricts access to
application program that are not authorized to act as manager application programs
or agent application programs. This security is implemented by a password, similar
to the passwords used by traditional VTAM application programs.

For information about where the password is passed to the MIBConnect function,
refer to “MIBConnect—MIB Connection Function” on page 56.

Creates and Ends Associations
An association is a logical connection between CMIP services on this host and
CMIP services on another node or between CMIP services on this host and itself.
An association between CMIP services on this host and itself is a local association.
An association between CMIP services on this host and CMIP services on another
node is a remote association.

Creating Associations
Associations can be created in two ways:

v CMIP services can establish the association when it recognizes the need for one

v An application program can establish an association with the ACF.Associate
request, which is described under “Starting Associations” on page 136.

Ending Associations
An association can be ended by several methods:

v An application program can issue the ACF.Abort or ACF.Release request.

v CMIP services can end the association if it has been idle for 2 hours.

v The VTAM limited resources function (selective termination of idle LU 6.2 [APPC]
sessions) sessions, can cause an association to be ended. For a description of
the effect of selective termination on associations, refer to “Creating a Dedicated
Association” on page 140.

Manages Associations
CMIP services chooses the association across which to carry a particular message
unless the application program overrides the default association by specifying an
association on the MIBSendRequest function or the MIBSendCmipRequest function.

CMIP services chooses the association based on the type of message, the
application context tied to the association, and the destination of the message.
CMIP services enforces the application context against inbound messages.

Introduction to OO and CMIP Services

Chapter 1. Introduction to Object Orientation and CMIP Services 9

It controls the minute-by-minute operations of associations by:

v Determining the type of the message and routing it to the correct element of
CMIP services

v Maintaining the capabilities of the associations that exist

v Negotiating the capabilities of the associations

v Determining the correct association for a message

v Initiating an association for messages that are directed to object instances
located on systems with which there are no associations

v Establishing a default association for messages that are directed to object
instances on the local system

v Allowing local objects or application programs to monitor the state of associations

v Routing incoming messages to the correct function within CMIP services.

CMIP services establishes associations. When establishing associations, it
negotiates the application context to be used for that association. It ensures that the
parameters are correct.

To ensure secure associations, VTAM CMIP services checks the directory definition
file to see whether data-encryption-standard (DES)-based security or
application-program-to-application-program security is in effect.

For an overview of the security function in VTAM CMIP services, refer to
“Chapter 11. Application-Program-to-Application-Program Security” on page 143.
See z/OS Communications Server: SNA Network Implementation Guide and z/OS
Communications Server: SNA Resource Definition Reference for a description of
the directory definition file.

Manages PDUs
As a service to local application programs, CMIP services determines whether
protocol data units (PDUs) are properly formed and exchanged in the proper order.
This service frees application programs from having to verify the PDUs themselves.

A PDU can have several types of errors. These include:

v A value is out of the legal range for the data type. The message is rejected.

v A tag is unrecognized in a SET value or SEQUENCE value. The message is
rejected.

If a PDU suffers from several of these errors at one time, the most severe errors
are processed first. When the message fails to be decoded, CMIP services tries to
decode the Remote Operations Service Element (ROSE) header for the message. If
the header can be decoded, the message is rejected.

In some cases, if the header cannot be decoded, the association is ended. This
should not happen unless the message is totally destroyed.

CMIP services understands the messages that are exchanged with object
instances. It maintains the list of outstanding requests that require replies and
enforces that the CMIP strings it receives are correct.

CMIP services does not always ensure that duplicate linked-replies are not
received.

Introduction to OO and CMIP Services

10 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Supports All CMIP Verbs and Most CMIP Parameters
VTAM CMIP services supports the CMIP syntaxes as documented in “Appendix B.
ASN.1 Specification of the Basic CMIP Strings” on page 241 with certain
exceptions. CMIP services supports all CMIP verbs:
v EVENT-REPORT
v GET
v SET
v ACTION
v CREATE
v DELETE
v CANCEL-GET.

VTAM CMIP services does not support atomic synchronization. If atomic
synchronization is specified, the CMIP request is responded to with a
syncNotSupport error. VTAM CMIP services does not support the EFD scheduling
attributes.

Requirements for Application Programs
As described in previous sections, VTAM CMIP services provides many services
that free application programs from having to code many of the common CMIP
functions. The application program is therefore allowed to focus on functions
specific to the object instances it represents. The application program implements
the behavior of its objects. It must:

v Code an APPL definition statement to define the application program to VTAM.
See z/OS Communications Server: SNA Resource Definition Reference for
information about the APPL definition statement.

v Connect to VTAM CMIP services using the MIBConnect function. When using the
MIBConnect function, the application program must provide the address of its
read queue exit routine. The read queue exit routine is required for application
programs to communicate with CMIP services.

It is highly recommended that you code a TPEND exit routine for VTAM to invoke
when VTAM is terminating. If you code a TPEND exit routine, you must provide
its address.

v Register at least one object instance using the MIBSendRegister function. An
application program can register as many object instances as it represents. An
object instance cannot be registered by more than one application program.

v Implement the behavior of the object instances it represents. CMIP services does
not provide a repository for object attributes. Any CMIP operations targeting an
object instance are delivered to the application program that registered that
instance (or, in the case of a subtree manager, the application program that
registered the subtree containing that instance).

For example, a CMIP GET request is forwarded to the application program
representing the objects targeted in the request. Those application programs are
responsible for collecting the requested attributes, building them into the proper
response, and sending them using the MIBSendCmipResponse function.

For scoped requests that affect object instances across multiple application
programs, no coordination is needed between the application programs. CMIP
services coordinates the requests for the application program. Your application
program simply indicates that it has finished its part of the response by setting
the last-in-chain attribute when invoking the MIBSendCmipResponse function.
For hints on coding subtree managers refer to “Subtree Managers” on page 12.

Introduction to OO and CMIP Services

Chapter 1. Introduction to Object Orientation and CMIP Services 11

An application program can be both a manager and an agent, but it is helpful to
separate them for the following discussion under “Types of Application
Programs”.

v Issue the MIBDisconnect function to disconnect the application from CMIP
services.

Types of Application Programs
Different types of agent application programs have different rights and
responsibilities. These types are defined by the capabilities that are requested when
an object instance is registered. These types are:
v Basic application program, with no special capabilities
v Subtree manager application program
v Create handler application program.

Basic Application Programs
A basic application program is one that represents one or more object instances, all
of which are registered to CMIP services. The registering allows CMIP services to
provide the most service because it can scope requests to each affected instance.
A basic application program does not receive CMIP create requests to have new
instances generated, but it can create and register any number of object instances.
The trigger for creating these instances is the responsibility of the application
program and is often dictated by the resources the application program must
represent.

Subtree Managers
A subtree manager is an application program that has assumed additional
responsibilities. It supports any number of instances. It is not required to register
any of them with CMIP services. It has requested and been granted ownership of a
portion of the naming tree, which includes all instances contained within it.

All scoped indications that can include a member of the subtree owned by the
subtree manager are passed to the subtree manager. It is responsible for managing
scoping within its subtree and for creating all of the responses from its instances.

The subtree manager indicates to CMIP services that it has completed the
responses from its supported instances. It cannot use the MIB variables &DN or
&OC for any of its instances that are not registered. For information about MIB
variables, refer to “MIB Variable Format” on page 98.

Once a subtree manager has registered itself, it establishes ownership of a subtree.
At that point, no other application program can register objects within that subtree.
Only the subtree manager can register additional objects within the subtree. For
each leaf of the subtree that the subtree manager registers, it must first register all
instances in that branch of the tree. An object cannot be registered unless its parent
has been registered. Messages to an object within the subtree are assigned the
local identifier of the subtree manager object. This is the local identifier that was
explicitly requested.

A process that registers as a subtree manager can assume responsibility for one or
more subtrees of the naming hierarchy. This capability allows the process to register
only a small number of instances. A minimum of one instance is required. For each
instance that it chooses not to register, the subtree manager must do the
global-to-local name mapping and scoping functions that are provided by CMIP
services for registered instances.

Introduction to OO and CMIP Services

12 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

If many of the instances an application program represents are dynamic and
changing frequently, it might be preferable for the application program to act as a
subtree manager, instead of registering all of its instances. In that case, the
overhead of registering the instances makes management too expensive to be
practical.

Another example is when the application program chooses to control scoping itself.
For example, if an agent application program is to receive scoped requests for a
large number of objects, it might be better to receive a single scoped request. (A
single scoped request is one that is not replicated by CMIP services.) A single
scoped request might allow the request to be processed more efficiently internally.

Here we list one advantage and one disadvantage to registering as a subtree
manager. The advantage is that a subtree manager can avoid registering some or
all of its object instances and can control scoped operations. The disadvantage is
that a subtree manager is required to assign names within the name space it owns.
It must also ensure that the names are unique. It must perform all of the scoping
function within its name space, a requirement that makes coding the application
program more complicated.

When designing an application program, you must decide between writing additional
code to provide these functions or registering all instances.

Create Handlers
A create handler is an application program that assumes additional responsibilities.
It registers to receive create messages for instances of a specific class. Registering
allows create messages to be sent to a process that is capable of handling them.
For information about the API function that registers a create handler, refer to
“MIBSendRegister—MIB Asynchronous Registration Function” on page 79.

Only one create handler can be registered per object class.

Special Considerations for Manager Application Programs
Manager application programs can have somewhat different requirements from
agent application programs. A manager application program generally has no need
to register any objects unless it needs to be the target of CMIP requests from other
manager application programs. VTAM CMIP services requires that at least one
object be registered. CMIP services does not require the object to be of a particular
object class. The managerApplication object class has been defined for manager
application programs that do not have a need for any specific class.

Manager application programs can base their management on the creation of EFDs
so that they can receive CMIP event reports from managed systems. For a
description of how to create the EFDs, refer to “Filters and Routes Events” on
page 7. Such manager application programs must register to CMIP services as an
application entity. The application entity title used must match the one specified in
the destination list within the EFDs it creates on the managed systems. For
information about how an application can register as an application entity to CMIP
services, refer to “Registering an Application Entity” on page 135.

Manager application programs that rely on CMIP event reports for monitoring
objects at remote systems might need a mechanism to help them determine when
the connection to the managed system is down. CMIP services gives application
programs the ability to subscribe to associations. For example, a manager might
want to subscribe to each association that was used for creating an EFD. The

Introduction to OO and CMIP Services

Chapter 1. Introduction to Object Orientation and CMIP Services 13

handle for each such association is returned in the response to the create request
for the EFDs. For information on how an application program can subscribe to an
association, refer to “Subscribing to Association Information” on page 133.

Special Considerations for Topology Manager Application Programs
Usually, topology manager application programs need to know about specific
resources or sets of resources, but do not want to receive event reports about all
resources in a network. For CMIP services to know which resources the manager
application program is interested in, the manager application program creates an
EFD object and specifies a filter attribute for it to indicate which event reports are to
be forwarded to the manager application program.

Therefore, to allow the VTAM topology agent to send only those notifications for
resources that a topology manager application program is interested in, the
following conditions must be met:

v VTAM must be started with the OSIEVENT=PATTERNS start option. See z/OS
Communications Server: SNA Resource Definition Reference for a description of
this start option.

v The manager application program must create EFD objects with filter attributes
that follow the patterns that CMIP services recognizes. For a description of these
patterns, refer to “Patterns of EFDs That CMIP Services Recognizes”.

If the OSIEVENT=ALL start option is specified, the VTAM topology agent generates
all possible notifications, as long as at least one EFD has been created. If no EFDs
have been created, no notifications are generated.

If the OSIEVENT=NONE start option is specified, the VTAM topology agent
generates no notifications.

Patterns of EFDs That CMIP Services Recognizes
If the filter attribute is specified according to the patterns described here and the
OSIEVENT=PATTERNS start option is specified, CMIP services recognizes that the
manager application program is interested in a particular resource or set of
resources. CMIP services recognizes the following patterns:

v A filter specifies a certain object class but not a specific resource and the
OSIEVENT=PATTERNS start option is specified.

If the object class relates to VTAM topology, the VTAM topology agent forwards
to CMIP services all notifications for all instances of that class. CMIP services
then creates an event report and sends it to the manager application program if
all criteria in the filter were met.

v A filter specifies a certain resource, with or without object class specified and the
OSIEVENT=PATTERNS start option is specified.

If the object class relates to VTAM topology, the VTAM topology agent forwards
notifications for that instance to CMIP services. CMIP services then creates an
event report and sends it to the manager application program if all criteria in the
filter were met.

v A filter is created locally by some manager application program to collect remote
notifications using a filter similar to the one shown:

(item (equality (attributeId 1.3.18.0.0.1746, attributeValue
(mgr (distinguishedName '1.3.18.0.2.4.6=netid;2.9.3.2.7.4=(n
ame "cpname");1.3.18.0.0.2175=objectname')))))

Introduction to OO and CMIP Services

14 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

CMIP services assumes that such filters are not meant to collect topology
information, so the presence of this EFD does not cause the topology agent to
start generating notifications.

Specific Object Classes That CMIP Services Recognizes
Here are the object identifiers for the recognized classes:

1.3.18.0.0.1829
logicalUnit

1.3.18.0.0.2281
crossDomainResource

1.3.18.0.0.1803
luGroup

1.3.18.0.0.2267
definitionGroup

1.3.18.0.0.2085
logicalLink

1.3.18.0.0.2089
port

1.3.18.0.0.1844
t4Node

CMIP Error Handling
This section discusses the general VTAM CMIP error-handling scheme. It covers
what types of errors can be detected and returned to invoking application programs
and what types of general handling must occur when error conditions are returned.

The error handling scheme for the most part can be described in generic terms.
Error handling specific to a given CMIP operation is described in the section that
covers that operation.

General Error Handling
This section discusses how the Systems Management Application Entity (SMAE)
portion of CMIP services handles remote operations CMIP (RO/CMIP) errors. In
general, the error reporting mechanism is dictated by the area of CMIP services
that detects the error.

Errors Found during Outbound CMIP Processing
An outbound CMIP string is a CMIP string that is being sent from an application
program to some destination.

In general, any error found in a request (confirmed and unconfirmed) or response in
the originating SMAE is reported to the invoking application program by an
asynchronous CMIP services API error code as a service error.

In the case where the destination of the CMIP string is on the same system as the
origin of the CMIP string, some differences apply. If the CMIP string arrives at the
presentation layer of CMIP services before an error is detected, the CMIP error is
not reported as an API error code. In this case, once the CMIP string has passed
the presentation layer and is back in the SMAE, the SMAE does not distinguish
between same-system errors and different-system errors. The error in this case is
handled as specified in the following list for inbound CMIP strings received from

Introduction to OO and CMIP Services

Chapter 1. Introduction to Object Orientation and CMIP Services 15

other systems. Refer to “Chapter 3. Overview of CMIP Services API Functions” on
page 41 for a list of these API error codes.

The system that originated the outbound request can also receive errors detected
on the destination system in the form of RO-REJECT(U), RO-REJECT(P), and
RO-ERROR. These error types are passed to the application program if enough
information is available for routing.

Errors Found during Inbound CMIP Processing
An inbound CMIP string is a CMIP string (either request or response) that is being
received from some CMIP sender. The sender can be on a different system or on
the same system.

When the SMAE portion of CMIP services is the destination system of the CMIP
request or response, error handling is handled as follows:

v If the error is found in ROSE, an RO-REJECT(P) is sent to the originating
system.

This is true for responses and requests (both confirmed and unconfirmed).

v If the error is found in CMISE, an RO-REJECT(U) is sent to the originating
system.

This is true for responses and requests (both confirmed and unconfirmed).

v For errors found in requests above CMISE in CMIP services, an RO-ERROR is
returned if the request if confirmed.

If the request is not confirmed, the request is discarded.

v For responses, the code above CMISE in CMIP services does not have any
known error checking.

If an error is found at this level, CMIP services attempts to pass the response to
the appropriate object or discard the message if the message cannot be routed.

v If an application program detects an error during CMIP request processing, an
RO-ERROR is returned if the request if confirmed.

If the request is not confirmed, the request is discarded.

For confirmed requests, the actual errors returned are to be defined by the
application program, such as the VTAM topology agent. Refer to “Responding to
CMIP Requests” on page 163 for more information on how the VTAM topology
agent handles such errors.

v If an application program detects an error during CMIP response processing, the
error handling processing is defined by the application program. Refer to
“Responding to CMIP Requests” on page 163 for more information on how the
VTAM topology agent handles such errors.

CMIP Sequencing for Separate CMIP Operations
CMIP flows that relate to separate CMIP operations could flow between the agent
application program and the manager application program in any order. The VTAM
topology agent and CMIP services do not attempt to ensure that such CMIP strings,
generated as the result of separate operations, are sequenced and delivered based
on order of events or processing. For example, a notification that is generated by
VTAM after a GET response is built could actually be received by the manager
application program before the GET response.

Therefore, the manager application program should not rely on order of receipt as
an indication of order of processing at the agent application program. There is no

Introduction to OO and CMIP Services

16 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

correlation between order of processing by the agent application program and time
of receipt by the manager application program.

Introduction to OO and CMIP Services

Chapter 1. Introduction to Object Orientation and CMIP Services 17

18 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Chapter 2. Sample CMIP Application Program

Many of the aspects of writing a CMIP application program can be explained using
a sample application program. This chapter presents a CMIP application program
that sends a simple CMIP request to another application program on any host.

The purpose of this application program is to determine whether or not CMIP
services is active on a specific host in the network. In other words, this is a “ping”
application program for CMIP over SNA much as APING is a “ping” application
program for APPC. The sample program implements this by sending a CMIP GET
request to the system object on that host. The system object should always exist,
either as part of CMIP services or as part of a CMIP application program. If an error
occurs bringing up an association to the remote CMIP services, then either the
specified host is unreachable or CMIP services is not active on that host.
Otherwise, the specified host is reachable and CMIP services is active. Errors
returned by the remote system object itself are unimportant.

Note: The system object is implemented by VTAM as part of CMIP services, so it
is always present if VTAM CMIP services is active.

The sample application program is comprised of the following source files:

ACYCMS1C
This C language module is the main logic of the application program. It
calls several different API functions to communicate with CMIP services.

ACYCMS2A
This assembler language module is the read queue exit routine for the
application program.

ACYCMS3A
This assembler language module is used to obtain the address of an API
function in LPALIB.

ACYCMS4A
This assembler language module is used to switch the application program
task into supervisor state.

ACYCMS5A
This assembler language module is used to wait on an ECB.

ACYCMS6A
This assembler language module is the TPEND exit routine for the
CMIPPING application program.

ACYCMS7A
This assembler language module is used to switch the application program
task into problem state.

“ACYCMS1C Source File” on page 22 is the main logic for the CMIPPING
application program.

Note: To facilitate reading on any host terminal and printing on any host printer,
trigraph sequences have been used for square brackets. These sequences
are “??(” for left square bracket and “??)” for right square bracket.

An outline of processing in function main is listed here:

1. Make sure that the user has provided the required parameters to the program.

© Copyright IBM Corp. 1995, 2001 19

a. TargetNetid is the SNA netID of the host that will be pinged.

b. TargetNauname is the SNA NAU name (in this case, a CP name or SSCP
name) of the host that will be pinged.

c. ApplName is the ACB name used by CMIPPING when issuing
MIBConnect.

d. Password, if provided, is the ACB password as specified on the APPL
statement.

2. Load the addresses of the API functions which are used.

This program uses MIBConnect, MIBDisconnect, MIBSendCmipRequest, and
MIBSendRegister. ACYCMS3A is used to find the addresses of all of the API
functions.

3. Switch to supervisor state.

The caller of API routines must be in supervisor state. ACYCMS4A is
responsible for issuing the MODESET system macro to switch the task to
supervisor state.

4. Connect to CMIP services.

A CMIP Application must issue MIBConnect before calling any other MIB API
functions. MIBConnect opens an ACB on behalf of the calling application
program, initializes the connection with CMIP services, and returns various
information to the caller.

5. Register a managerApplication object.

Even though CMIPPING does not need to represent the behavior of any
objects for the purposes of the application program, it must register an object
nonetheless because CMIP services requires that requests be issued by an
object that it knows about. The managerApplication object class was defined
for manager application programs that use the registered object only as the
source of requests.

Before calling the MIBSendRegister function, it first builds the name of the
managerApplication object. The name of the system object on this system,
returned by MIBConnect, is used to build the name of this object.

6. Wait for the registration message from CMIP services.

ACYCMS6A is called to wait on an ECB. This ECB will be posted by the read
queue exit routine (ACYCMS2A) when it is called by CMIP services. The next
message to arrive should be the registration response.

7. Parse the registration response message from CMIP services.

If the msg_type field in the APIhdr is API_REG_ACCEPT and the invokeId field
in the APIhdr is the one returned by MIBSendRegister, then the registration
succeeded.

8. Send a GET request to the system object on the target host.

This first builds the name of the remote system object to which a GET request
will be sent. It then builds the entire CMIP string representing the GET
argument.

The CMIP string is passed to MIBSendCmipRequest, which will send the GET
request to CMIP services for processing.

9. Wait for the GET response message from CMIP services.

ACYCMS6A is called again to wait until the read queue exit routine posts an
ECB to wake up the main task. The next message should be the GET
response.

10. Parse the GET response to determine whether or not CMIP services is active
on the target host.

Sample Program

20 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

If the invokeId field in the APIhdr is the one returned by MIBSendCmipRequest
and the msg_type field in the APIhdr is API_MSG, then the request was
received by a remote CMIP services. Determining whether or not the system
object was available on the remote system and was able to processing the
request would require parsing the string portion of the response. That is
beyond the scope of this application program.

11. Disconnect from CMIP services. If MIBConnect succeeded, MIBDisconnect
should be called — even if some other error happened in between.

12. Exit the application program.

“ACYCMS2A Source File” on page 29 is the read queue exit routine for the
CMIPPING application program. An outline of processing in the exit follows:

1. The VTAM reason code is always stored in the user data control block so that
the main task of CMIPPING (ACYCMS1C) can find out why the read queue exit
routine was driven.

2. If the reason code is zero, meaning that VTAM passed data to the read queue
exit routine, that data will be copied to the buffer in the user data control block.

3. If the reason code is something other than zero, a message will be generated.
The likely scenario is that CMIP services is terminating.

4. The read queue exit routine posts an ECB which is being waited on by the main
task of CMIPPING in order to wake it up.

5. The read queue exit routine returns zero to VTAM, telling VTAM that it was able
to successfully process the message.

Note: In a real CMIP application program read queue exit routine, you probably
need additional buffer space to pass messages to the main task. Some
CMIP requests can result in many messages being returned by CMIP
services, one after another. It is unlikely that an application program
designed like CMIPPING would see all of the messages, since they would
arrive more quickly than the main task could be dispatched and process
each one.

“ACYCMS3A Source File” on page 31 is a utility module to load the addresses of
the API functions on behalf of the CMIPPING application program. The only
processing to perform is to load the address of each routine into a control block
passed by the caller (ACYCMS1C).

Note: This module does not check return codes from the LOAD macro and always
returns zero. This is not appropriate for a real application program, since
those modules may not be installed in LPALIB.

“ACYCMS4A Source File” on page 34 is a utility module to switch into supervisor
state. The only processing to perform is to invoke the MODESET assembler
macroinstruction.

Note: CMIPPING must be authorized for the MODESET to work.

“ACYCMS5A Source File” on page 35 is a utility module to wait on a specified ECB.
The only processing to perform is to invoke the WAIT assembler macroinstruction.

“ACYCMS6A Source File” on page 36 is the TPEND exit routine for the CMIPPING
application program. All it does is display the reason code passed by VTAM.

Sample Program

Chapter 2. Sample CMIP Application Program 21

“ACYCMS7A Source File” on page 38 is a utility module to switch into problem
state. The only processing to perform is to invoke the MODESET assembler
macroinstruction.

ACYCMS1C Source File
/***/
/* */
/* MEMBER NAME: ACYCMS1C */
/* */
/* DESCRIPTIVE NAME: Sample CMIP Application */
/* */
//* */
/* COPYRIGHT: LICENSED MATERIALS - PROPERTY OF IBM */
/* */
/* "RESTRICTED MATERIALS OF IBM" */
/* */
/* 5695-117 (C) COPYRIGHT IBM CORP. 1994 */
/* */
/* MEMBER CATEGORY: Sample CMIP application */
/* */
/* */
/***/

/*
* CMIPPING - Sample C language CMIP application
*
* This sample application can be used to determine if CMIP Services
* is active on a specified host in the network.
*
* It illustrates some of the concepts involved in writing a CMIP
* application for use with VTAM.
*
* Notes: To facilitate reading on any host terminal and printing on
* any host printer, trigraph sequences have been used for
* square brackets. These sequences are "??(" for left square
* bracket and "??)" for right square bracket.
*/

#pragma csect(code, "ACYCMS1C")
#pragma csect(static,"SCYCMS1C")

/***/
/* C Standard Library include files */
/***/

#include #include #include
/***/
/* VTAM include files */
/***/

#include "acyaphdh.h" /* VTAM MIB API interface */

/***/
/* type declarations */
/***/

/***/
/* An instance of MIBAddresses_t is passed to ACYCMS3A, which fills */
/* it in with actual addresses of the MIB API functions, which are */
/* loaded from LPALIB. */
/***/

typedef struct MIBAddresses_tag
{

MIBConnect_t *MIBConnect;

Sample Program

22 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

MIBDisconnect_t *MIBDisconnect;
MIBSendRegister_t *MIBSendRegister;
MIBSendDeleteRegistration_t *MIBSendDeleteRegistration;
MIBSendRequest_t *MIBSendRequest;
MIBSendResponse_t *MIBSendResponse;
MIBSendCmipRequest_t *MIBSendCmipRequest;
MIBSendCmipResponse_t *MIBSendCmipResponse;

} MIBAddresses_t;

/***/
/* The address of an instance of ReadQueueExitData_t is passed to */
/* MIBConnect. CMIP Services then passes that same address to the */
/* Read Queue Exit each time it is called. That allows sharing of */
/* data between the Read Queue Exit and this main task. */
/***/

typedef struct ReadQueueExitData_tag
{

int ECB;
int ReasonCode;
char Buffer ??(16384??);

} ReadQueueExitData_t;

/***/
/* external functions */
/***/

/***/
/* ACYCMS2A is the Read Queue Exit for this sample CMIP application. */
/* Only the address of this routine is needed in C. */
/***/

extern void ACYCMS2A(void);

/***/
/* ACYCMS3A finds the addresses of routines in LPALIB via the LOAD */
/* assembler macroinstruction. */
/***/

extern int ACYCMS3A(MIBAddresses_t *);

/***/
/* ACYCMS4A switches to supervisor state via the MODESET assembler */
/* macroinstruction. */
/***/

extern void ACYCMS4A(void);

/***/
/* ACYCMS5A waits on an ECB via the WAIT assembler macroinstruction. */
/* It will be passed the address of the same ECB which the Read */
/* Queue Exit will post so that the Read Queue Exit can "wake up" */
/* this task when data is available. */
/***/

extern void ACYCMS5A(int *ECB);

/***/
/* ACYCMS6A is the TPEND exit for this application. */
/***/

extern void ACYCMS6A(void);

/***/
/* ACYCMS7A switches to problem state via the MODESET assembler */
/* macroinstruction. */
/***/

ACYCMS1C

Chapter 2. Sample CMIP Application Program 23

extern void ACYCMS7A(void);

/***/
/* constants */
/***/

#define APPL_NAME "CMIPPING" /* name of this application as
used in messages */

/***/
/* data types */
/***/

typedef void *LocalId_t; /* Local identifiers, associated
with registered objects, must
have a size between 1 and 8
bytes. CMIPPING uses four-
byte local identifiers of type
void *. */

/***/
/* Input parameters: */
/* (1) Netid of target CMIP Services */
/* (2) Nauname of target CMIP Services */
/* (3) Application name to use (valid ACB name) */
/* (4) Optional password */
/***/

int main(int argc,const char **argv)
{

APIhdr *APIhdr_ptr;
char CMIP_StringArgument ??(512??);
char MyObjectName ??(120??);
char RemoteSystemObject ??(120??);
char SMAE ??(100??);
char SystemObject ??(100??);
const char *ApplName;
const char *Password;
const char *TargetNauname;
const char *TargetNetid;
char *VTAM_Release;
int Connected, rc;
int LinkId;
MIBAddresses_t APIs;
unsigned int InvokeId;
ReadQueueExitData_t ReadQueueExitData;
size_t SMAE_Size, SystemObjectSize;
unsigned int ACB_Info;
LocalId_t *MyObjectId;

rc = 0;

memset(&ReadQueueExitData,0,sizeof(ReadQueueExitData));

if (argc != 4 && argc != 5)
{

fprintf(stderr,
"Usage: " APPL_NAME " Netid Nauname Applname \n"
"\n"
" " APPL_NAME " is used to determine whether or not\n"
" there is an active CMIP Services on a SNA host\n"
" specified by Netid and Nauname.\n"
"\n"
" Applname is the ACB name used by this program.\n"
" Netid and Nauname specify the target SNA host.\n"
" Password (optional) is the ACB password.\n"

ACYCMS1C

24 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

"\n"
" " APPL_NAME " cannot continue.\n");

rc = 1;
}

if (rc == 0) /* If no errors so far... */
{

TargetNetid = argv ??(1??); /* first parm passed to program */
TargetNauname = argv ??(2??); /* second parm */
ApplName = argv ??(3??); /* third parm */

if (argc == 5) /* If a password was provided... */
Password = argv ??(4??); /* fourth parm */

else
Password = NULL;

ACYCMS4A(); /* You must be in supervisor
state to call VTAM MIB API
routines. */

SMAE_Size = sizeof(SMAE);
SystemObjectSize = sizeof(SystemObject);
MyObjectId = (void *)"Anything you want"; /* The local identifier

for the object registered by
this application is the
address of this string. */

}

/***/
/* Obtain addresses of API routines used by this program. */
/***/

if (rc == 0) /* If no errors so far... */
{

rc = ACYCMS3A(&APIs);

if (rc != 0)
{

fprintf(stderr,
"The address of an API routine could not be loaded\n"
"from LPALIB.\n"
"\n"
APPL_NAME " cannot continue.\n");

}
}

if (rc == 0) /* If no errors so far... */
{

rc = APIs.MIBConnect(0, /* always zero for this release */
&LinkId, /* MIBConnect will fill in LinkId

with a handle to the
connection. */

65536, /* maximum number of outstanding
requests */

ApplName, /* ACB name */
(void *)ACYCMS6A, /* TPEND exit */
(void *)ACYCMS2A, /* address of the Read

Queue Exit */
&SMAE_Size, /* On input, this is the size of

the SMAE buffer. On output,
this is the length of the SMAE
name. */

SMAE, /* This is where MIBConnect will
store the SMAE name (if there
is enough room). */

&SystemObjectSize, /* On input, this is the
size of the System Object name

ACYCMS1C

Chapter 2. Sample CMIP Application Program 25

buffer. On output, this is the
length of the System Object
name. */

SystemObject, /* This is where MIBConnect will
store the System Object name
(if there is enough room). */

(int)&ReadQueueExitData, /* This will be
provided to this appl's Read
Queue Exit by CMIP Services. */

&ACB_Info, /* If an error occurs opening the
ACB, this will contain the
OPEN ACB error code. */

&VTAM_Release, /* MIBConnect will store the
address of the VTAM release
level here. */

Password, /* ACB password */
0, /* dataspace not used */
NULL, /* dataspace not used */
sizeof(LocalId_t), /* size of local ids

for all objects registered by
this application */

0); /* no special options specified */

Connected = rc == 0; /* Remember whether or not
MIBConnect was successful. */

if (rc != 0)
{

fprintf(stderr,
"MIBConnect returned %d.\n"
"\n"
APPL_NAME " cannot continue.\n",
rc);

}
}

if (rc == 0) /* If no errors so far... */
{

/***/
/* Build the distinguished name of the object that will be */
/* registered. It is named directly "under" the System Object, */
/* so its name is the system object name concatenated with one */
/* more RelativeDistinguishedName. */
/* */
/* A short form distinguished name (DN) will be built. Note */
/* that CMIP Services can handle distinguished names from */
/* applications in either short or long form. Applications can */
/* elect to receive distinguished names from CMIP Services in */
/* short form by specifying SHORT_NAMES as the last parameter to */
/* MIBConnect. By default, applications receive distinguished */
/* names in long form. */
/***/

strcpy(MyObjectName,SystemObject);
strcat(MyObjectName,";1.3.18.0.0.2175=");
strcat(MyObjectName,ApplName);

puts("Here is the object being registered:");
puts(MyObjectName);

rc = APIs.MIBSendRegister(LinkId, /* This is the handle returned by
MIBConnect. */

&InvokeId, /* MIBSendRegister will store
an invoke id, or correlator, for
the registration request here.*/

&MyObjectId, /* This is the address of
the local id to be associated

ACYCMS1C

26 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

with this object. */
"1.3.18.0.0.2155", /* This is the object

class of this object. */
DN_OF_INSTANCE, /* This parameter must

have this value. */
MyObjectName, /* This is the dist.

name of this object. */
NULL, /* Use default name binding. */
0, /* no special capabilities */
0, /* no allomorphs */
NULL, /* no allomorphs */
0, /* not a create handler for any

class */
NULL); /* not a create handler */

if (rc != 0)
{

fprintf(stderr,
"MIBSendRegister returned %d.\n"
"\n"
APPL_NAME " cannot continue.\n",
rc);

}
}

if (rc == 0) /* If o.k. so far... */
{

ReadQueueExitData.ECB = 0;
ACYCMS5A(&ReadQueueExitData.ECB);
if (ReadQueueExitData.ReasonCode == 0) /* If data was received...*/

APIhdr_ptr = (APIhdr *)ReadQueueExitData.Buffer;
else

rc = ReadQueueExitData.ReasonCode;
}

/***/
/* Parse the response from registration to see if it was o.k. */
/***/

if (rc == 0) /* If o.k. so far... */
{

if ((APIhdr_ptr->msg_type != API_REG_ACCEPT) ||
(APIhdr_ptr->invokeId != InvokeId)) /* If an error

occurred... */
{

rc = 1;
fprintf(stderr,

"An unexpected response was received from object\n"
"registration.\n"
"\n"
APPL_NAME " cannot continue.\n");

}
}

if (rc == 0) /* If o.k. so far... */
{

/***/
/* Build CMIP GET request string here using the netid and */
/* nauname of the target host. */
/***/

strcpy(RemoteSystemObject,"1.3.18.0.2.4.6=");
strcat(RemoteSystemObject,TargetNetid);
strcat(RemoteSystemObject,";2.9.3.2.7.4=(name ");
strcat(RemoteSystemObject,TargetNauname);
strcat(RemoteSystemObject,")");

strcpy(CMIP_StringArgument,

ACYCMS1C

Chapter 2. Sample CMIP Application Program 27

"("
"baseManagedObjectClass 2.9.3.2.3.13, "
"baseManagedObjectInstance "
"(distinguishedName '");

strcat(CMIP_StringArgument,RemoteSystemObject);
strcat(CMIP_StringArgument,"'),"

"attributeIdList "
"(2.9.3.2.7.35,2.9.3.2.7.5)"

")");

rc = APIs.MIBSendCmipRequest(LinkId, /* handle returned by
MIBConnect */

3, /* operation value is GET */
CMIP_StringArgument,
&MyObjectId,
NULL,
DS_NOT_PROVIDED,
NULL,
&InvokeId);

if (rc != 0)
{

fprintf(stderr,
"MIBSendCmipRequest returned %d.\n"
"\n"
APPL_NAME " cannot continue.\n",
rc);

}
}

if (rc == 0) /* If o.k. so far... */
{

ReadQueueExitData.ECB = 0;
ACYCMS5A(&ReadQueueExitData.ECB);
if (ReadQueueExitData.ReasonCode == 0) /* If data was received...*/

APIhdr_ptr = (APIhdr *)ReadQueueExitData.Buffer;
else

rc = ReadQueueExitData.ReasonCode;
}

if (rc == 0)
{

/***/
/* Display whether or not the GET was successful. */
/***/

if ((APIhdr_ptr->msg_type == API_MSG) &&
(APIhdr_ptr->invokeId == InvokeId))

{
/***/
/* Technically, the message can be a CMIP error message which */
/* could state that the system object doesn't exist or that */
/* the system object can't handle the request. Since this */
/* program only checks to see if the specified CMIP Services */
/* can be contacted, a CMIP error message will not be */
/* considered a problem. */
/***/

puts("The remote CMIP Services was contacted successfully.");
}
else
{

fprintf(stderr,
"The remote CMIP Services could not be contacted.\n");

rc = 1;
}

}

ACYCMS1C

28 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

if (Connected)
{

rc = APIs.MIBDisconnect(LinkId, /* This is the handle returned by
MIBDisconnect. */

&ACB_Info); /* If an error occurs closing the
ACB, MIBDisconnect will store
the CLOSE ACB error code here.*/

if (rc != 0)
{

fprintf(stderr,
"MIBDisconnect returned %d.\n",
rc);

}
}

ACYCMS7A(); /* You must be in problem
state to exit cleanly. */

fprintf(stderr,
APPL_NAME " is exiting with return code %d.\n",
rc);

return rc;
}

ACYCMS2A Source File
*/***/
/ */
/ MEMBER NAME: ACYCMS2A */
/ */
/ DESCRIPTIVE NAME: Read Queue Exit for sample CMIP */
/ application */
/ */
/ */
/ COPYRIGHT: LICENSED MATERIALS - PROPERTY OF IBM */
/ */
/ "RESTRICTED MATERIALS OF IBM" */
/ */
/ 5695-117 (C) COPYRIGHT IBM CORP. 1994 */
/ */
/ MEMBER CATEGORY: Sample CMIP application */
/ */
*/***/

TITLE ' /**00001000
********' 00002000

ACYCMS2A CSECT , 0001 00003000
ACYCMS2A AMODE 24 0001 00004000
ACYCMS2A RMODE 24 0001 00005000
@MAINENT DS 0H 0001 00006000

USING *,@15 0001 00007000
B @PROLOG 0001 00008000
DC AL1(16) 0001 00009000
DC C'ACYCMS2A 95.125' 0001 00010000
DROP @15 00011000

@PROLOG STM @14,@12,12(@13) 0001 00012000
LR @12,@15 0001 00013000

@PSTART EQU ACYCMS2A 0001 00014000
USING @PSTART,@12 0001 00015000
ST @13,@SA00001+4 0001 00016000
LA @14,@SA00001 0001 00017000
ST @14,8(,@13) 0001 00018000
LR @13,@14 0001 00019000

* 0014 00020000
*/**/ 00021000
/ MAINLINE */ 00022000
*/**/ 00023000

ACYCMS1C

Chapter 2. Sample CMIP Application Program 29

* 0014 00024000
R10 = R1; / Saves Pointer to Parameters */ 00025000
* 0014 00026000

LR R10,R1 0014 00027000
GLB_DATA.GLB_ReasonCode = VTAM_REASON; / Tell the main task why the 00028000
* Read Queue Exit was driven. */ 00029000
* 0015 00030000

L @04,VTAM_REASON(,R10) 0015 00031000
ST @04,GLB_REASONCODE(,R06_USER_DATA) 0015 00032000

IF (VTAM_REASON = 0) THEN / If data is available to be 0016 00033000
* copied... */ 00034000

LTR @04,@04 0016 00035000
BNZ @RF00016 0016 00036000

* DO; 0017 00037000
* R11 = VTAM_LENGTH; 0018 00038000

L @05,VTAM_LENGTH(,R10) 0018 00039000
LR R11,@05 0018 00040000

* R3 = VTAM_LENGTH; 0019 00041000
LR R3,@05 0019 00042000

* R2 = ADDR(GLB_Buffer); 0020 00043000
LA R2,GLB_BUFFER(,R06_USER_DATA) 0020 00044000

* TMP_R10 = R10; 0021 00045000
LR @07_TMP_R10,R10 0021 00046000

* R10 = VTAM_APIHDR_PTR; 0022 00047000
L R10,VTAM_APIHDR_PTR(,R10) 0022 00048000

* MVCL(R2,R10); 0023 00049000
MVCL R2,R10 0023 00050000

* R10 = TMP_R10; 0024 00051000
LR R10,@07_TMP_R10 0024 00052000

* END; 0025 00053000
*ELSE 0026 00054000
* DO; 0026 00055000

B @RC00016 0026 00056000
@RF00016 DS 0H 0027 00057000
* GEN (WTO 'CMIPPING: Read Queue Exit driven with reason <> 0!'); 00058000
@GS00027 DS 0H 0027 00059000

WTO 'CMIPPING: Read Queue Exit driven with reason <> 0!' 00060000
@GE00027 DS 0H 0028 00061000
* END; 0028 00062000
* 0028 00063000
*/**/ 00064000
/ Wake up the main task by posting the ECB which it is */ 00065000
/ waiting on. */ 00066000
*/**/ 00067000
* 0029 00068000
*R1 = ADDR(GLB_ECB); 0029 00069000
@RC00016 LR R1,R06_USER_DATA 0029 00070000
*GEN; 0030 00071000
* 0030 00072000
@GS00030 DS 0H 0030 00073000

POST (1),X'FFFF' 00074000
@GE00030 DS 0H 0031 00075000
RETURN CODE(0); / Return to VTAM. */ 00076000
* 0031 00077000

SLR @15,@15 0031 00078000
L @13,4(,@13) 0031 00079000
L @14,12(,@13) 0031 00080000
LM @00,@12,20(@13) 0031 00081000
BR @14 0031 00082000

*END ACYCMS2A; 0032 00083000
@DATA DS 0H 00084000

DS 0F 00085000
@SA00001 DS 18F 00086000

DS 0F 00087000
LTORG 00088000
DS 0D 00089000

@DYNSIZE EQU 0 00090000

ACYCMS2A

30 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

@00 EQU 0 00091000
@01 EQU 1 00092000
@02 EQU 2 00093000
@03 EQU 3 00094000
@04 EQU 4 00095000
@05 EQU 5 00096000
@06 EQU 6 00097000
@07 EQU 7 00098000
@08 EQU 8 00099000
@09 EQU 9 00100000
@10 EQU 10 00101000
@11 EQU 11 00102000
@12 EQU 12 00103000
@13 EQU 13 00104000
@14 EQU 14 00105000
@15 EQU 15 00106000
@07_TMP_R10 EQU @07 00107000
R0 EQU @00 00108000
R1 EQU @01 00109000
R2 EQU @02 00110000
R3 EQU @03 00111000
R06_USER_DATA EQU @06 00112000
R10 EQU @10 00113000
R11 EQU @11 00114000
VTAM_PARM_LIST EQU 0,20,C'C' 00115000
VTAM_REASON EQU VTAM_PARM_LIST,4,C'F' 00116000
VTAM_APIHDR_PTR EQU VTAM_PARM_LIST+4,4,C'A' 00117000
VTAM_LENGTH EQU VTAM_PARM_LIST+12,4,C'F' 00118000
VTAM_APIHDR EQU 0,,C'C' 00119000
GLB_DATA EQU 0,16392,C'C' 00120000
GLB_ECB EQU GLB_DATA,4,C'F' 00121000
GLB_REASONCODE EQU GLB_DATA+4,4,C'F' 00122000
GLB_BUFFER EQU GLB_DATA+8,16384,C'C' 00123000

AGO .UNREF 00124000
VTAM_MSG_TYPE EQU VTAM_PARM_LIST+16,4,C'F' 00125000
VTAM_STR_HEADER_PTR EQU VTAM_PARM_LIST+8,4,C'A' 00126000
.UNREF ANOP 00127000

DS 0D 00128000
@ENDDATA EQU * 00129000
@MODLEN EQU @ENDDATA-ACYCMS2A 00130000

END ,(PL/X-370,0103,95125) 00131000

ACYCMS3A Source File
*/***/
/ */
/ MEMBER NAME: ACYCMS3A */
/ */
/ DESCRIPTIVE NAME: Load addresses of MIB API functions */
/ for sample CMIP application */
/ */
/ */
/ COPYRIGHT: LICENSED MATERIALS - PROPERTY OF IBM */
/ */
/ "RESTRICTED MATERIALS OF IBM" */
/ */
/ 5695-117 (C) COPYRIGHT IBM CORP. 1994 */
/ */
/ MEMBER CATEGORY: Sample CMIP application */
/ */
*/***/

TITLE ' /**00001000
********' 00002000

ACYCMS3A CSECT , 0001 00003000
ACYCMS3A AMODE 24 0001 00004000
ACYCMS3A RMODE 24 0001 00005000
@MAINENT DS 0H 0001 00006000

ACYCMS2A

Chapter 2. Sample CMIP Application Program 31

USING *,@15 0001 00007000
B @PROLOG 0001 00008000
DC AL1(16) 0001 00009000
DC C'ACYCMS3A 95.125' 0001 00010000
DROP @15 00011000

@PROLOG STM @14,@12,12(@13) 0001 00012000
LR @12,@15 0001 00013000

@PSTART EQU ACYCMS3A 0001 00014000
USING @PSTART,@12 0001 00015000

* 0007 00016000
*/**/ 00017000
/ */ 00018000
/ MAINLINE */ 00019000
/ */ 00020000
*/**/ 00021000
* 0007 00022000
*/**/ 00023000
/ MVS will abnormally terminate the task if a routine cannot be */ 00024000
/ found. "Good" code would use the ERRET parameter on the LOAD */ 00025000
/ macro to provide an exit to be called if the specified module */ 00026000
/ cannot be found. Using that capability, this routine could */ 00027000
/ return a bad return code instead of having the task terminated */ 00028000
/ when a routine can't be found. */ 00029000
*/**/ 00030000
* 0007 00031000
R10 = R1; / Free up R1 since LOAD will 0007 00032000
* clobber it. */ 00033000
* 0007 00034000

LR R10,R1 0007 00035000
*RFY R1 UNRSTD; 0008 00036000
* 0008 00037000
*GEN CODE SETS(R0,R1) DEFS(ACYAPCNP) (LOAD EP=ACYAPCNP); 0009 00038000
@GS00009 DS 0H 0009 00039000

LOAD EP=ACYAPCNP 00040000
@GE00009 DS 0H 0010 00041000
*MIBConnect = R0; 0010 00042000
* 0010 00043000

L @11,PARM_PTR(,R10) 0010 00044000
ST R0,MIBCONNECT(,@11) 0010 00045000

*GEN CODE SETS(R0,R1) DEFS(ACYAPD1P) (LOAD EP=ACYAPD1P); 0011 00046000
@GS00011 DS 0H 0011 00047000

LOAD EP=ACYAPD1P 00048000
@GE00011 DS 0H 0012 00049000
*MIBDisconnect = R0; 0012 00050000
* 0012 00051000

L @11,PARM_PTR(,R10) 0012 00052000
ST R0,MIBDISCONNECT(,@11) 0012 00053000

*GEN CODE SETS(R0,R1) DEFS(ACYAPRGP) (LOAD EP=ACYAPRGP); 0013 00054000
@GS00013 DS 0H 0013 00055000

LOAD EP=ACYAPRGP 00056000
@GE00013 DS 0H 0014 00057000
*MIBSendRegister = R0; 0014 00058000
* 0014 00059000

L @11,PARM_PTR(,R10) 0014 00060000
ST R0,MIBSENDREGISTER(,@11) 0014 00061000

*GEN CODE SETS(R0,R1) DEFS(ACYAPDRP) (LOAD EP=ACYAPDRP); 0015 00062000
@GS00015 DS 0H 0015 00063000

LOAD EP=ACYAPDRP 00064000
@GE00015 DS 0H 0016 00065000
*MIBSendDeleteRegistration = R0; 0016 00066000
* 0016 00067000

L @11,PARM_PTR(,R10) 0016 00068000
ST R0,MIBSENDDELETEREGISTRATION(,@11) 0016 00069000

*GEN CODE SETS(R0,R1) DEFS(ACYAPQRP) (LOAD EP=ACYAPQRP); 0017 00070000
@GS00017 DS 0H 0017 00071000

LOAD EP=ACYAPQRP 00072000
@GE00017 DS 0H 0018 00073000

ACYCMS3A

32 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

*MIBSendRequest = R0; 0018 00074000
* 0018 00075000

L @11,PARM_PTR(,R10) 0018 00076000
ST R0,MIBSENDREQUEST(,@11) 0018 00077000

*GEN CODE SETS(R0,R1) DEFS(ACYAPRSP) (LOAD EP=ACYAPRSP); 0019 00078000
@GS00019 DS 0H 0019 00079000

LOAD EP=ACYAPRSP 00080000
@GE00019 DS 0H 0020 00081000
*MIBSendResponse = R0; 0020 00082000
* 0020 00083000

L @11,PARM_PTR(,R10) 0020 00084000
ST R0,MIBSENDRESPONSE(,@11) 0020 00085000

*GEN CODE SETS(R0,R1) DEFS(ACYAPQCP) (LOAD EP=ACYAPQCP); 0021 00086000
@GS00021 DS 0H 0021 00087000

LOAD EP=ACYAPQCP 00088000
@GE00021 DS 0H 0022 00089000
*MIBSendCmipRequest = R0; 0022 00090000
* 0022 00091000

L @11,PARM_PTR(,R10) 0022 00092000
ST R0,MIBSENDCMIPREQUEST(,@11) 0022 00093000

*GEN CODE SETS(R0,R1) DEFS(ACYAPCPP) (LOAD EP=ACYAPCPP); 0023 00094000
@GS00023 DS 0H 0023 00095000

LOAD EP=ACYAPCPP 00096000
@GE00023 DS 0H 0024 00097000
*MIBSendCmipResponse = R0; 0024 00098000
* 0024 00099000

L @11,PARM_PTR(,R10) 0024 00100000
ST R0,MIBSENDCMIPRESPONSE(,@11) 0024 00101000

RETURN CODE(0); / Stupidly assume that no error 00102000
* occurred. */ 00103000
* 0025 00104000

SLR @15,@15 0025 00105000
L @14,12(,@13) 0025 00106000
LM @00,@12,20(@13) 0025 00107000
BR @14 0025 00108000

*END ACYCMS3A; 0026 00109000
@DATA DS 0H 00110000

DS 0F 00111000
DS 0F 00112000
LTORG 00113000
DS 0D 00114000

@DYNSIZE EQU 0 00115000
@00 EQU 0 00116000
@01 EQU 1 00117000
@02 EQU 2 00118000
@03 EQU 3 00119000
@04 EQU 4 00120000
@05 EQU 5 00121000
@06 EQU 6 00122000
@07 EQU 7 00123000
@08 EQU 8 00124000
@09 EQU 9 00125000
@10 EQU 10 00126000
@11 EQU 11 00127000
@12 EQU 12 00128000
@13 EQU 13 00129000
@14 EQU 14 00130000
@15 EQU 15 00131000
R0 EQU @00 00132000
R1 EQU @01 00133000
R10 EQU @10 00134000
MIBADDRESSES_T EQU 0,32,C'C' 00135000
MIBCONNECT EQU MIBADDRESSES_T,4,C'A' 00136000
MIBDISCONNECT EQU MIBADDRESSES_T+4,4,C'A' 00137000
MIBSENDREGISTER EQU MIBADDRESSES_T+8,4,C'A' 00138000
MIBSENDDELETEREGISTRATION EQU MIBADDRESSES_T+12,4,C'A' 00139000
MIBSENDREQUEST EQU MIBADDRESSES_T+16,4,C'A' 00140000

ACYCMS3A

Chapter 2. Sample CMIP Application Program 33

MIBSENDRESPONSE EQU MIBADDRESSES_T+20,4,C'A' 00141000
MIBSENDCMIPREQUEST EQU MIBADDRESSES_T+24,4,C'A' 00142000
MIBSENDCMIPRESPONSE EQU MIBADDRESSES_T+28,4,C'A' 00143000
PARM_PTR EQU 0,4,C'A' 00144000

DS 0D 00145000
@ENDDATA EQU * 00146000
@MODLEN EQU @ENDDATA-ACYCMS3A 00147000

END ,(PL/X-370,0103,95125) 00148000

ACYCMS4A Source File
*/***/
/ */
/ MEMBER NAME: ACYCMS4A */
/ */
/ DESCRIPTIVE NAME: Switch to supervisor state for sample */
/ CMIP application */
/ */
/ */
/ COPYRIGHT: LICENSED MATERIALS - PROPERTY OF IBM */
/ */
/ "RESTRICTED MATERIALS OF IBM" */
/ */
/ 5695-117 (C) COPYRIGHT IBM CORP. 1994 */
/ */
/ MEMBER CATEGORY: Sample CMIP application */
/ */
*/***/

TITLE ' /**00001000
********' 00002000

ACYCMS4A CSECT , 0001 00003000
ACYCMS4A AMODE 24 0001 00004000
ACYCMS4A RMODE 24 0001 00005000
@MAINENT DS 0H 0001 00006000

USING *,@15 0001 00007000
B @PROLOG 0001 00008000
DC AL1(16) 0001 00009000
DC C'ACYCMS4A 95.125' 0001 00010000
DROP @15 00011000

@PROLOG STM @14,@12,12(@13) 0001 00012000
LR @12,@15 0001 00013000

@PSTART EQU ACYCMS4A 0001 00014000
USING @PSTART,@12 0001 00015000

* 0002 00016000
@GS00002 DS 0H 0002 00017000

MODESET MODE=SUP 00018000
@GE00002 DS 0H 0003 00019000
*END ACYCMS4A; 0003 00020000
@EL00001 DS 0H 0003 00021000
@EF00001 DS 0H 0003 00022000
@ER00001 LM @14,@12,12(@13) 0003 00023000

BR @14 0003 00024000
@DATA DS 0H 00025000

DS 0F 00026000
DS 0F 00027000
LTORG 00028000
DS 0D 00029000

@DYNSIZE EQU 0 00030000
@00 EQU 0 00031000
@01 EQU 1 00032000
@02 EQU 2 00033000
@03 EQU 3 00034000
@04 EQU 4 00035000
@05 EQU 5 00036000
@06 EQU 6 00037000
@07 EQU 7 00038000
@08 EQU 8 00039000

ACYCMS3A

34 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

@09 EQU 9 00040000
@10 EQU 10 00041000
@11 EQU 11 00042000
@12 EQU 12 00043000
@13 EQU 13 00044000
@14 EQU 14 00045000
@15 EQU 15 00046000

DS 0D 00047000
@ENDDATA EQU * 00048000
@MODLEN EQU @ENDDATA-ACYCMS4A 00049000

END ,(PL/X-370,0103,95125) 00050000

ACYCMS5A Source File
*/***/
/ */
/ MEMBER NAME: ACYCMS5A */
/ */
/ DESCRIPTIVE NAME: WAIT on ECB for sample CMIP application */
/ */
/ */
/ COPYRIGHT: LICENSED MATERIALS - PROPERTY OF IBM */
/ */
/ "RESTRICTED MATERIALS OF IBM" */
/ */
/ 5695-117 (C) COPYRIGHT IBM CORP. 1994 */
/ */
/ MEMBER CATEGORY: Sample CMIP application */
/ */
*/***/

TITLE ' /**00001000
********' 00002000

ACYCMS5A CSECT , 0001 00003000
ACYCMS5A AMODE 24 0001 00004000
ACYCMS5A RMODE 24 0001 00005000
@MAINENT DS 0H 0001 00006000

USING *,@15 0001 00007000
B @PROLOG 0001 00008000
DC AL1(16) 0001 00009000
DC C'ACYCMS5A 95.125' 0001 00010000
DROP @15 00011000

@PROLOG STM @14,@12,12(@13) 0001 00012000
LR @12,@15 0001 00013000

@PSTART EQU ACYCMS5A 0001 00014000
USING @PSTART,@12 0001 00015000

* 0009 00016000
*/**/ 00017000
/ */ 00018000
/ MAINLINE */ 00019000
/ */ 00020000
*/**/ 00021000
* 0009 00022000
*R2 = R1; 0009 00023000
* 0009 00024000

LR R2,R1 0009 00025000
*R1 = ADDR(THE_ECB); 0010 00026000
* 0010 00027000

L R1,THE_ECB_PTR(,R2) 0010 00028000
*GEN EXIT; 0011 00029000
* 0011 00030000
@GS00011 DS 0H 0011 00031000

WAIT 1,ECB=(1) 00032000
@GE00011 DS 0H 0012 00033000
*RETURN CODE(0); 0012 00034000
* 0012 00035000

SLR @15,@15 0012 00036000
L @14,12(,@13) 0012 00037000

ACYCMS4A

Chapter 2. Sample CMIP Application Program 35

LM @00,@12,20(@13) 0012 00038000
BR @14 0012 00039000

*END ACYCMS5A; 0013 00040000
@DATA DS 0H 00041000

DS 0F 00042000
DS 0F 00043000
LTORG 00044000
DS 0D 00045000

@DYNSIZE EQU 0 00046000
@00 EQU 0 00047000
@01 EQU 1 00048000
@02 EQU 2 00049000
@03 EQU 3 00050000
@04 EQU 4 00051000
@05 EQU 5 00052000
@06 EQU 6 00053000
@07 EQU 7 00054000
@08 EQU 8 00055000
@09 EQU 9 00056000
@10 EQU 10 00057000
@11 EQU 11 00058000
@12 EQU 12 00059000
@13 EQU 13 00060000
@14 EQU 14 00061000
@15 EQU 15 00062000
R0 EQU @00 00063000
R1 EQU @01 00064000
R2 EQU @02 00065000
R14 EQU @14 00066000
R15 EQU @15 00067000
THE_ECB EQU 0,4,C'F' 00068000
THE_ECB_PTR EQU 0,4,C'A' 00069000

DS 0D 00070000
@ENDDATA EQU * 00071000
@MODLEN EQU @ENDDATA-ACYCMS5A 00072000

END ,(PL/X-370,0103,95125) 00073000

ACYCMS6A Source File
*/***/
/ */
/ MEMBER NAME: ACYCMS6A */
/ */
/ DESCRIPTIVE NAME: TPEND exit for sample CMIP application */
/ */
/ */
/ COPYRIGHT: LICENSED MATERIALS - PROPERTY OF IBM */
/ */
/ "RESTRICTED MATERIALS OF IBM" */
/ */
/ 5695-117 (C) COPYRIGHT IBM CORP. 1994 */
/ */
/ MEMBER CATEGORY: Sample CMIP application */
/ */
*/***/

TITLE ' /**00001000
********' 00002000

ACYCMS6A CSECT , 0001 00003000
ACYCMS6A AMODE 24 0001 00004000
ACYCMS6A RMODE 24 0001 00005000
@MAINENT DS 0H 0001 00006000

USING *,@15 0001 00007000
B @PROLOG 0001 00008000
DC AL1(16) 0001 00009000
DC C'ACYCMS6A 95.125' 0001 00010000
DROP @15 00011000

@PROLOG LR @12,@15 0001 00012000

ACYCMS5A

36 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

@PSTART EQU ACYCMS6A 0001 00013000
USING @PSTART,@12 0001 00014000

* 0005 00015000
* 0005 00016000
*/**/ 00017000
/ */ 00018000
/ MAINLINE */ 00019000
/ */ 00020000
*/**/ 00021000
* 0005 00022000
SELECT (REASON_CODE); / Issue message based on reason 00023000
* code */ 00024000

L @02,REASON_CODE(,R1) 0005 00025000
LTR @02,@02 0005 00026000
BM @RT00014 0005 00027000
BE @RT00006 0005 00028000
LA @00,12 0005 00029000
CR @02,@00 0005 00030000
BH @RT00014 0005 00031000
BE @RT00012 0005 00032000
IC @02,@CB00064(@02) 0005 00033000
SLL @02,2 0005 00034000
B @GL00001(@02) 0005 00035000

@GL00001 B @RT00014 0005 00036000
B @RT00008 0005 00037000
B @RT00010 0005 00038000

*WHEN (0) 0006 00039000
@RT00006 DS 0H 0007 00040000
* GEN; 0007 00041000
* 0007 00042000
@GS00007 DS 0H 0007 00043000

WTO ' ' 00044000
WTO 'CMIPPING TPEND DRIVEN: REASON CODE=00' 00045000
WTO ' ' 00046000

@GE00007 DS 0H 0008 00047000
*WHEN (4) 0008 00048000

B @RC00005 0008 00049000
@RT00008 DS 0H 0009 00050000
* GEN; 0009 00051000
* 0009 00052000
@GS00009 DS 0H 0009 00053000

WTO ' ' 00054000
WTO 'CMIPPING TPEND DRIVEN: REASON CODE=04' 00055000
WTO ' ' 00056000

@GE00009 DS 0H 0010 00057000
*WHEN (8) 0010 00058000

B @RC00005 0010 00059000
@RT00010 DS 0H 0011 00060000
* GEN; 0011 00061000
* 0011 00062000
@GS00011 DS 0H 0011 00063000

WTO ' ' 00064000
WTO 'CMIPPING TPEND DRIVEN: REASON CODE=08' 00065000
WTO ' ' 00066000

@GE00011 DS 0H 0012 00067000
*WHEN (12) 0012 00068000

B @RC00005 0012 00069000
@RT00012 DS 0H 0013 00070000
* GEN; 0013 00071000
* 0013 00072000
@GS00013 DS 0H 0013 00073000

WTO ' ' 00074000
WTO 'CMIPPING TPEND DRIVEN: REASON CODE=12' 00075000
WTO ' ' 00076000

@GE00013 DS 0H 0014 00077000
*OTHERWISE 0014 00078000

B @RC00005 0014 00079000

ACYCMS6A

Chapter 2. Sample CMIP Application Program 37

@RT00014 DS 0H 0015 00080000
* GEN; 0015 00081000
* 0015 00082000
@GS00015 DS 0H 0015 00083000

WTO ' ' 00084000
WTO 'CMIPPING TPEND DRIVEN: UNEXPECTED REASON CODE!' 00085000
WTO ' ' 00086000

@GE00015 DS 0H 0016 00087000
*END; 0016 00088000
* 0016 00089000
@RC00005 DS 0H 0017 00090000
RETURN CODE(RC); / return to VTAM */ 00091000
* 0017 00092000
@EL00001 DS 0H 0017 00093000
@EF00001 DS 0H 0017 00094000
@ER00001 BR @14 0017 00095000
*END ACYCMS6A; 0018 00096000
@DATA DS 0H 00097000

DS 0F 00098000
DS 0F 00099000
LTORG 00100000
DS 0D 00101000

@CB00064 DC XL12'000000000100000002000000' 00102000
@DYNSIZE EQU 0 00103000
@00 EQU 0 00104000
@01 EQU 1 00105000
@02 EQU 2 00106000
@03 EQU 3 00107000
@04 EQU 4 00108000
@05 EQU 5 00109000
@06 EQU 6 00110000
@07 EQU 7 00111000
@08 EQU 8 00112000
@09 EQU 9 00113000
@10 EQU 10 00114000
@11 EQU 11 00115000
@12 EQU 12 00116000
@13 EQU 13 00117000
@14 EQU 14 00118000
@15 EQU 15 00119000
R1 EQU @01 00120000
RC EQU @15 00121000
TPEND_PARM_LIST EQU 0,8,C'C' 00122000
REASON_CODE EQU TPEND_PARM_LIST+4,4,C'F' 00123000

AGO .UNREF 00124000
ACB_PTR EQU TPEND_PARM_LIST,4,C'A' 00125000
.UNREF ANOP 00126000

DS 0D 00127000
@ENDDATA EQU * 00128000
@MODLEN EQU @ENDDATA-ACYCMS6A 00129000

END ,(PL/X-370,0103,95125) 00130000

ACYCMS7A Source File
*/***/
/ */
/ MEMBER NAME: ACYCMS7A */
/ */
/ DESCRIPTIVE NAME: Switch to problem state for sample CMIP */
/ application */
/ */
/ */
/ COPYRIGHT: LICENSED MATERIALS - PROPERTY OF IBM */
/ */
/ "RESTRICTED MATERIALS OF IBM" */
/ */
/ 5695-117 (C) COPYRIGHT IBM CORP. 1994 */

ACYCMS6A

38 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

/ */
/ MEMBER CATEGORY: Sample CMIP application */
/ */
*/***/

TITLE ' /**00001000
********' 00002000

ACYCMS7A CSECT , 0001 00003000
ACYCMS7A AMODE 24 0001 00004000
ACYCMS7A RMODE 24 0001 00005000
@MAINENT DS 0H 0001 00006000

USING *,@15 0001 00007000
B @PROLOG 0001 00008000
DC AL1(16) 0001 00009000
DC C'ACYCMS7A 95.125' 0001 00010000
DROP @15 00011000

@PROLOG STM @14,@12,12(@13) 0001 00012000
LR @12,@15 0001 00013000

@PSTART EQU ACYCMS7A 0001 00014000
USING @PSTART,@12 0001 00015000

* 0002 00016000
@GS00002 DS 0H 0002 00017000

MODESET MODE=PROB 00018000
@GE00002 DS 0H 0003 00019000
*END ACYCMS7A; 0003 00020000
@EL00001 DS 0H 0003 00021000
@EF00001 DS 0H 0003 00022000
@ER00001 LM @14,@12,12(@13) 0003 00023000

BR @14 0003 00024000
@DATA DS 0H 00025000

DS 0F 00026000
DS 0F 00027000
LTORG 00028000
DS 0D 00029000

@DYNSIZE EQU 0 00030000
@00 EQU 0 00031000
@01 EQU 1 00032000
@02 EQU 2 00033000
@03 EQU 3 00034000
@04 EQU 4 00035000
@05 EQU 5 00036000
@06 EQU 6 00037000
@07 EQU 7 00038000
@08 EQU 8 00039000
@09 EQU 9 00040000
@10 EQU 10 00041000
@11 EQU 11 00042000
@12 EQU 12 00043000
@13 EQU 13 00044000
@14 EQU 14 00045000
@15 EQU 15 00046000

DS 0D 00047000
@ENDDATA EQU * 00048000
@MODLEN EQU @ENDDATA-ACYCMS7A 00049000

END ,(PL/X-370,0103,95125) 00050000

ACYCMS7A

Chapter 2. Sample CMIP Application Program 39

ACYCMS7A

40 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Chapter 3. Overview of CMIP Services API Functions

VTAM provides a set of API functions for management application programs to use
when interfacing with CMIP services. CMIP operations are performed through this
interface.

This chapter covers the following topics that relate to the API:
v Decisions an application programmer needs to make before coding
v Requirements for CMIP application programs
v Format of API messages.

Decisions to Make before Coding
You must decide among the following options before you begin coding your
application program:

v Do you want to use the common storage area (CSA) interface of the data space
interface?

v What form of distinguished name does your application program require from
CMIP services?

v Is your application program to be a manager application program or an agent
application program?

The following sections describe each of these decisions.

Common Storage Area Storage or Data Space Storage?
The API interface provides either of two mechanisms for receiving messages.
These two mechanisms are through the following:
v Common storage area (CSA) interface
v Data space interface.

Some differences exist between using CMIP services with the CSA interface and
using CMIP services with the data space interface.

Common Storage Area Interface
In the CSA interface, the read queue exit routine is called for each message. Each
message is passed in common storage. The CSA interface is intended to be used
by low-volume users.

The following exit routines and functions run under the same task:
v Read queue exit routine
v TPEND exit routine, if there is one
v MIBConnect function
v MIBDisconnect function.

The following diagram shows the relationship between the application program and
CMIP services for an application program using the CSA interface.

© Copyright IBM Corp. 1995, 2001 41

Data Space Interface
Application programs that expect to receive a large volume of messages should use
the data space interface. For this interface, messages remain in the data space
until they are freed by the application program or until the data space fills,
whichever occurs first.

The following exit routines and functions run under the same task:
v Read queue exit routine
v TPEND exit routine, if there is one
v MIBConnect function
v MIBDisconnect function.

The following diagram describes the relationship between the application program
and CMIP services for an application program using the data space interface.

An application program that uses one or more of the individual API functions must
load the entry point for that function from LPALIB. All modules are placed in LPALIB
when the operating system is initialized. Once the entry points for the APIs are

Figure 1. Using CMIP Services with the Common Storage Area Interface

Figure 2. Using CMIP Services with the Data Space Interface

API Functions

42 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

known, the application program can call an API function directly. See Table 2 on
page 53 for the module names of each API function. Application programs can have
any tasking structure. The functions for reading and freeing messages in the data
space are serially reusable only.

Advantages of CSA Interface and Data Space Interface
Message strings can be transferred from CMIP services to the application program
through either CSA storage or data space storage.

In general, application programs that use the CSA interface are simpler to code.
Application programs that use the data space interface are faster.

The data space interface has the following other advantages over the CSA
interface:

v Messages can be buffered. They do not have to be retrieved immediately from
the data space. With the CSA interface, the application program must copy its
message when the read queue exit routine is called. CMIP services frees the
CSA storage containing the message on return from the read queue exit routine.

v There are fewer task switches with the data space support. The read queue exit
routine is called only when the count of messages waiting in the data space goes
from zero to one. The CSA interface, by contrast, calls the read queue exit
routine for every message. Each time the read queue exit routine is called, it
causes a dispatch of the application program’s TCB.

v CSA can be a critical resource in some configurations. The data space interface
uses no CSA for inbound messages.

To display the amount of data space storage in use by an application program, use
the D NET,STORUSE command. See z/OS Communications Server: SNA
Operation for more information about this command.

An application program using the data space interface must not allow the messages
to back up in the data space to the point where the data space fills. If this occurs,
CMIP services stops forwarding messages to the application program until the
application program calls the MIBDisconnect function and calls the MIBConnect
function again.

Differences between the CSA interface and the data space interface are described
throughout this section.

Note: To use data space storage MVS/ESA* 3.1.3 or higher is required.

The API and the read queue exit routine handle all details of the message flow
between the application program and CMIP services. The application program
invokes the API when it needs to send a message. CMIP services returns
information to the application program according to the following methods:

v If using the CSA interface, information is returned by calling the read queue exit
routine for each message. For more information about the exit routine, refer to
“Read Queue Exit Routine for the CSA Interface” on page 87.

v If using the data space interface, information is returned by copying each
message to the data space and notifying the application program through the
read queue exit routine if the number of buffers in the data space goes from zero
to one. For more information about the exit routine, refer to “Read Queue Exit
Routine for Data Space Storage” on page 89.

API Functions

Chapter 3. Overview of CMIP Services API Functions 43

Note: When the application program is notified, the application program receives
notification again only when the number of buffers returns to zero and
goes to one buffer again. The application program must call the routine to
dequeue buffers from the data space storage until this routine indicates
that there are no more buffers to receive. See “Dequeueing a Buffer with
the Dequeue Routine” on page 92 for details.

The read queue exit routine runs in TCB mode in the application program’s address
space.

What Form of Distinguished Name?
Your application program can choose between two forms of distinguished names:
short form and long form. Here is a distinguished name written in short form:
1.3.18.0.2.4.6=NETA;2.9.3.2.7.4=(name AAAAAA)

Here is the same distinguished name written in long form:
(RelativeDistinguishedName (AttributeValueAssertion (attributeType
1.3.18.0.2.4.6, attributeValue "NETA")), RelativeDistinguishedName
(AttributeValueAssertion (attributeType 2.9.3.2.7.4, attributeVal
ue (name "AAAAAA"))))

Application programs can build distinguished names in either form to send to CMIP
services. Application programs specify to CMIP services on the connection options
parameter passed to the MIBConnect function which form of distinguished names
they wish to receive. For a description of the MIBConnect function, refer to
“MIBConnect—MIB Connection Function” on page 56.

What Type of Application Program—Manager or Agent?
An agent application program represents resources and processes CMIP requests
sent to those resources. A manager application program gathers information by
sending CMIP requests to resources.

Requirements for CMIP Application Programs
An application program that uses the API must fulfill the following requirements:

v The API must be called from the home address space.

v The application program must be authorized.

v The application program must use a task mode of the task control block (TCB).

The read queue exit routine is called under the same TCB that issued the
MIBConnect function. An application program with multiple tasks can issue the
following API functions from any of its tasks:
– MIBSendRequest
– MIBSendResponse
– MIBSendRegister
– MIBSendDeleteRegister
– MIBSendCmipRequest
– MIBSendCmipResponse.

However, the application program must be prepared to handle the invoking of the
read queue exit routine from the task that originated the MIBConnect function.

v The MIBConnect and MIBDisconnect functions must be called from the same
task.

v The application program must define the APPL definition statement and specify
the name that is to be used on the MIBConnect function. See z/OS

API Functions

44 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Communications Server: SNA Resource Definition Reference for more
information about the APPL definition statement.

– A separate APPL definition statement is needed for each MIBConnect function
that the application program is expected to perform. The application program
cannot call the MIBConnect function again without calling the MIBDisconnect
function first.

– Each successful call to the MIBConnect function that specifies the data space
vector parameter causes a new data space to be created. For more
information about the MIBConnect function, refer to “MIBConnect—MIB
Connection Function” on page 56.

v No API functions can be issued from the TPEND exit routine or the read queue
exit routine.

Calls to API functions can be made from more than one subtask. However, the
application program is assumed to be terminated when the subtask that issued the
MIBConnect function terminates. When the task that issued the MIBConnect
function terminates, the ACB for the application program is closed automatically.

The ACB is not closed automatically if multiple tasks are used and a subtask that
meets the following conditions terminates:
v The subtask is using the API
v The subtask did not open the connection with the MIBConnect function.

Format of API Messages
API messages have the following format:

The type of message is determined by the first field in the API header. The string
follows the API header. The syntax of the string includes optional source
information, optional destination information, and a required message.

Description and Example of the API header
The API header is built for the application program when the application program
calls API functions that send messages to CMIP services. It is returned to the
application program when the message is sent from CMIP services to the
application program.

The API header begins in the first byte of the message. The length of the header
varies according to the size of the local identifier. If the message contains data in
addition to the API header, the data begins immediately following the API header.

The C language definition of the API header follows. Note that actual local
identifiers vary in size from one to eight bytes in length and can be of any data
type. It is declared as an eight-character array for simplicity.

Note: To facilitate reading on any host terminal and printing on any host printer,
trigraph sequences have been used for square brackets. These sequences
are “??(” for left square bracket and “??)” for right square bracket.

Figure 3. Format of API Messages

Application Program Requirements

Chapter 3. Overview of CMIP Services API Functions 45

typedef struct APIhdr_tag
{

unsigned char msg_type;
unsigned char api_version;
unsigned char origin;
unsigned char RESERVED1; /* Application programs must not

use or depend on the value of
this field in any way. */

unsigned int invokeId;
unsigned int connectId;
unsigned int numLocalIds;
time_t timestamp;
unsigned short resultCode;
unsigned char RESERVED2??(2??); /* Application programs must not

use or depend on the value of
this field in any way. */

unsigned int RESERVED3; /* Application programs must not
use or depend on the value of
this field in any way. */

unsigned char localIds??(8??);
} APIhdr;

The actual size of the API header associated with a particular message received
from CMIP services is determined by the size of the fixed part (all fields up to but
not including the localIDs field) plus the number of attached local identifiers times
the size of each local identifier. For this release, the number of attached local
identifiers is always one.

The actual size is a useful quantity since the string portions of the message start
immediately after the API header.

To make it easier to calculate the actual size, the APIhdrSize macro is provided in
the language header file, ACYAPHDH. Given the name of an APIhdr and the size of
the application’s local identifiers, it returns the actual size of an API header. The
following example shows the APIhdrSize macro:
#define MY_LOCAL_ID_SIZE 7

APIhdr *APIhdr1;
APIhdr APIhdr2;
size_t Size1, Size2;

Size1 = APIhdrSize(*APIhdr1,MY_LOCAL_ID_SIZE);
Size2 = APIhdrSize(APIhdr2,MY_LOCAL_ID_SIZE);

API Header Fields
A description of each field in the API header follows:

msg_type
Indicates the type and format of message to which this header is attached. An
API message can be an indication, a confirmation, or an OSI error. Messages
of type API_MSG, API_REG_ACCEPT, API_SVC_COMPLETE, or
API_SVC_ERROR contain a formatted string immediately following the API
header. This formatted string ends with X'00'.

API_TERMINATE_INSTANCE does not have a string, but X'00' is stored after
the local identifier for the convenience of the application program.

CMIP services uses additional values internally for the msg_type field. These
values can appear in buffer trace records generated when an application
program calls a API function to send data to CMIP services.

Application Program Requirements

46 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Each of the possible msg_type values for APIhdr structure that can be received
by an application program is described in the following list.

API_MSG
A CMIP string or a response to a VTAM-specific request or response. An
example of a response to a VTAM-specific request is ACF.SubscribeRsp.
API_MSG is defined in ACYAPHDH. For a listing, refer to “Appendix A. C
Language Header File (ACYAPHDH)” on page 231.

API_REG_ACCEPT
Sent by CMIP services to indicate that the MIBSendRegister request
succeeded. API_REG_ACCEPT is defined in ACYAPHDH. For a listing,
refer to “Appendix A. C Language Header File (ACYAPHDH)” on page 231.

API_SVC_COMPLETE
Sent by CMIP services to indicate that the associated request was
processed correctly. This message is returned for unconfirmed CMIP
requests. API_SVC_COMPLETE is defined in ACYAPHDH. For a listing,
refer to “Appendix A. C Language Header File (ACYAPHDH)” on page 231.

API_SVC_ERROR
Sent by CMIP services to indicate that the associated request could not be
processed. Examples of why it could not be processed are that the string
was incorrectly formatted or that there is no network path available to the
destination. A specific error code is provided in the message to assist in
diagnosing the problem.

In many cases, CMIP services records additional diagnostic information in
CMER VIT entry of the VTAM internal trace. See z/OS Communications
Server: SNA Diagnosis Vol 2 FFST Dumps and the VIT for information
about the CMER VIT entry. See for z/OS Communications Server: SNA
Diagnosis Vol 1 Techniques and Procedures information about how to use
the VTAM internal trace.

API_SVC_ERROR is defined in ACYAPHDH. For a listing, refer to
“Appendix A. C Language Header File (ACYAPHDH)” on page 231.

API_TERMINATE_INSTANCE
Sent by CMIP services to indicate that the object has been deregistered.

API_TERMINATE_INSTANCE is defined in ACYAPHDH. For a listing, refer
to “Appendix A. C Language Header File (ACYAPHDH)” on page 231.

api_version
Reserved for use by CMIP services.

origin
Indicates where the message was generated and how the message should be
used. Each of the possible origin field values is described in the following list:

ORIGIN_OBJ
Response to a request that was previously submitted by the object
receiving the message. The receiving object can use the invoke identifier to
look up the previous request.

ORIGIN_REMOTE
Generated by another object and is a form of unsolicited request or linked
reply. The object receiving this message should use the invoke identifier
from the API header and the association data from the string to respond to
the message.

Application Program Requirements

Chapter 3. Overview of CMIP Services API Functions 47

invokeId
Can be used to correlate requests and responses. If the origin field is set to
ORIGIN_OBJ, the invoke identifier field was generated by the application
program when a previous request was sent to CMIP services. If the origin field
is set to ORIGIN_REMOTE, the invoke identifier field was generated by a
remote object and must be returned in a response along with the association
handle so that the remote object can use it for correlation.

connectId
The connect identifier field is reserved for use by the API.

timestamp
Set by the API when a message is sent to CMIP services.

numLocalIds
Specifies the number of local identifiers following the fixed-size portion of the
API header. This field is always zero or one.

resultCode
For API_SVC_ERROR messages, the error code is stored here. The same
error code also appears in the string.

localIds
Can contain a local identifier. A local identifier is a unique identifier for an object
and was provided to MIBSendRegister when that object was registered. If a
local identifer is present, it ranges in size from 1 to 8 bytes. The number of
bytes is determined by the application program and is specified in a parameter
passed to MIBConnect. This local identifiers field is passed back to the
application program unchanged by CMIP services.

Description and Example of the String

Strings that are included in API_MSG messages begin with the following fields,
some of which are optional, depending on whether the API_MSG is a request,
indication, response, or confirmation, as shown in Table 1 on page 49.

Application Program Requirements

48 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Table 1. Destination and Source Fields in String Headers

Type of
CMIP
Message

src-type field src field dest-type field dest field

Request Optional for
subtree
managers, only.
This is choice (2),
if included.

This is never
included for
application
programs other
than subtree
managers.

Optional. This is
the distinguished
name, if included.

Optional. This can
be any choice.

Optional. This can
be any choice.

Indication 1 assoc-handle Never included Never included

Response Optional for
subtree
managers, only.
This is choice (2),
if included.

This is never
included for
application
programs other
than subtree
managers.

Optional. This is
the distinguished
name, if included.

1 assoc-handle

Confirmation 1 assoc-handle Never there Never there

The message field is the only field that must be provided on requests. Responses
and linked replies must be formatted with the association data that was provided on
the indication. (The indication is the request being answered.) The caller of the
MIBSendRequest function or MIBSendResponse function must build the string with
all fields. Other API functions do not require the caller to build the string with all
fields.

For API functions that build the string automatically, for example, the
MIBSendCmipRequest function, separate fields are provided to pass individual
fields that are placed in the string by the API function.

The syntax of the string header follows, in ASN.1 notation:
Header ::= SEQUENCE

{
src-type INTEGER -- source type
{

assoc-handle(1) -- association handle
} OPTIONAL,
src GraphicString OPTIONAL, -- source
dest-type INTEGER -- destination type
{

assoc-handle(1), -- association handle
full-dn(2), -- distinguished name
ae-title(3 -- AE title

Application Program Requirements

Chapter 3. Overview of CMIP Services API Functions 49

} OPTIONAL,
dest GraphicString OPTIONAL, -- destination
msg GraphicString -- the message itself

}

The format of the required msg field in the string header is dictated by the syntax of
the message sent or received by the application program. The following example
shows a CMIP string, as received by an application program from CMIP services.
This string immediately follows the localIds field of the APIhdr structure.
src-type 1, src a1,msg CMIP-1.ROIVapdu (invokeID 327686, operation-v
alue 3, argument (baseManagedObjectClass 1.3.18.0.0.1829, baseManage
dObjectInstance (distinguishedName (RelativeDistinguishedName (Attri
buteValueAssertion (attributeType 1.3.18.0.2.4.6, attributeValue "MY
NETID")), RelativeDistinguishedName (AttributeValueAssertion (attrib
uteType 1.3.18.0.0.2032, attributeValue "MYCPNAME")), RelativeDistin
guishedName (AttributeValueAssertion (attributeType 1.3.18.0.0.1984,
attributeValue "APPL1")))), synchronization bestEffort, scope (basi
cScope 0), filter (and ())))

Rules for the Source and Destination Fields in the String
When messages are received from CMIP services through the API (on indications
and confirmations), the following rules apply:

v If the msg_type field in the API header is API_MSG, the src-type field in the
string header is set to 1 (assoc-handle) and the src field contains the association
handle over which the message arrived.

v If the msg_type field in the API header is not API_MSG, the source data is not
present.

v If the local identifier in the API header refers to a subtree manager and the
message is not targeted for that subtree manager, the dest-type field in the string
is full-dn and the dest field contains the distinguished name of the object instance
that is supposed to receive the message.

The application program does not normally build the src-type, src, dest-type, and
dest portions of the string, but instead relies on MIBSendCmipRequest and
MIBSendCmipResponse functions to build this portion of the string.

The src-type and src fields in the string header need to be provided only if the
object needs to override the distinguished name associated with the registered
object that is building the message.

The only acceptable src-type is distinguished name (0), which is the default. If the
src field is provided and it contains a distinguished name that is different from the
provider, the message contains a source override. Only a subtree manager can
specify a source name to override the source name in the string header. If an
application program that is not a subtree manager specifies a source, the message
is flagged with an error.

The dest-type and dest fields are not required. However, these fields can be used
to explicitly address messages when the syntax of the message does not contain
routing information or when the routing information is not understood by CMIP
services. If the CMIP standard is being used, explicit destination information is not
required because the destination is given in the managedObjectInstance field.

Application Program Requirements

50 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

The same does not apply, however, to OSI responses prompted by an indication
and containing the same invoke identifier as the indication. When an object sends a
response, it must provide the association handle from the indication that prompted
the response.

Messages received by an object instance do not contain the dest-type and dest
fields.

The msg field in the string header contains the formatted string. The string must
begin with an ASN.1 module name and an ASN.1 syntax name. For all CMIP flows,
the module name is “CMIP-1” because CMIP-1 is the name of the ASN.1 module
that defines the syntaxes used for CMIP flows.

Following the module name is the type name. The module name and type name
must be separated by exactly one period; no other characters can be placed
between these names. The remainder of the message is defined by the ASN.1
syntax for the module and type specified.

Application Program Requirements

Chapter 3. Overview of CMIP Services API Functions 51

52 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Chapter 4. CMIP Services API Function Syntax and Operands

This chapter describes all of the VTAM CMIP services API functions. Function
descriptions are arranged alphabetically.

For each function, an example of its use is given. These examples are not intended
to show the sequence of operations that an application program must perform as a
management application program. They merely show the syntax of calling the API
function.

Overview of API Functions
Table 2 lists the API functions and indicates the name of the module that must be
loaded before invoking an API function. Although logical names such as
MIBConnect and MIBSendRegister are used in the table, the physical names of the
API functions are the module entry point names.

The abbreviation “N/A” in the “Module Entry Point” column indicates that these are
the data space modules used for dequeueing or releasing the messages from the
data space. The addresses of these modules are returned on the MIBConnect
function. Refer to the data space vector format and the interface control block
(ISTNMICB) format in the “MIBConnect—MIB Connection Function” on page 56.

The “Type” column indicates whether the function is synchronous or asynchronous.
For a description of these types, refer to “Synchronous and Asychronous Functions”
on page 55.

Table 2. API Functions: Module Entry Point, Type, and Where to Find More Information

API Function
Module entry
point Type

More
Information

MIBConnect ACYAPCNP Synchronous Page 56

MIBDisconnect ACYAPD1P Synchronous Page 67

MIBSendRegister ACYAPRGP Asynchronous Page 79

MIBSendDeleteRegistration ACYAPDRP Asynchronous Page 77

MIBSendRequest ACYAPQRP Asynchronous Page 83

MIBSendCmipRequest ACYAPQCP Asynchronous Page 70

MIBSendResponse ACYAPRSP Asynchronous Page 83

MIBSendCmipResponse ACYAPCPP Asynchronous Page 73

Data space dequeue routine N/A Synchronous Page 92

Data space release routine N/A Synchronous Page 93

How the Functions Are Coded
The functions are coded in the same format as C language functions. Parameters
are positional, and a value must be specified for each parameter to the function.
For some parameters, NULL (a pointer with value zero) may be specified instead of
some other value. Such parameters might be described as “optional input” under
the “Declarations” section for each API function.

© Copyright IBM Corp. 1995, 2001 53

Parameters are separated by commas. Parameter values must be specified in the
format listed in the declarations section.

For example, in the declarations section of the MIBConnect function, the following
line indicates that the API level must be specified as an unsigned integer:

unsigned int, /* API level - input */

In the parameter descriptions, the phrase “null-terminated string” means a sequence
of EBCDIC characters terminated by a byte containing zero, for example:
char *s1 = "Hello";
char s2[6] = {'H','e','l','l', 'o', '\o'}

Refer to the appropriate C language publication for your operating system for more
information on operand formats.

How the Functions Are Described
For each function, the following information is included:
v Purpose of the function
v Declarations for the function
v Descriptions of the parameters
v A list of return codes
v An example of how the function is coded in an application program.

Completion Information
If errors occur in CMIP services while processing a request or response, CMIP
services sends a MIB.ServiceError message to the object that originated the
request or response.

All of the functions have a return code that should be examined by the application
program. A value of zero means that the function was successful. Other values alert
the application program to incorrect parameters, resource shortages (for example,
memory allocation errors), and other problems.

The return codes for each API function are listed under “Return Codes” in the
section for each function.

These return codes are used by VTAM CMIP services and appear in the CMER VIT
entry and in messages sent from VTAM CMIP services to the application programs.
See z/OS Communications Server: SNA Diagnosis Vol 2 FFST Dumps and the VIT
for information about the CMER VIT entry.

How the Functions Are Coded

54 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Table 3 shows which VIT entries are for each API function.

Table 3. VIT Entries for Each API Function

API Function VIT Entry

MIBConnect MC01 and MC02

MIBDisconnect MDIS

MIBSendCmipResponse MQRS

MIBSendCmipRequest MQRQ

MIBSendDeleteRegistration MDEL

MIBSendRegister MREG

MIBSendResponse MQRS

MIBSendRequest MQRQ

Synchronous and Asychronous Functions
The return codes from synchronous functions indicate whether the function
completed successfully. MIBConnect and MIBDisconnect are synchronous
functions.

The return codes from asynchronous functions indicate only whether CMIP services
received the request or response. All API functions, except MIBConnect and
MIBDisconnect, are asynchronous functions.

All of the API functions that return an invoke identifier are asynchronous functions.
The invoke identifier can be used to correlate the response to the original request.
A return code of zero from the API function indicates that the request was
successfully sent to CMIP services. The confirmation from the target of the request
serves as the acknowledgement.

On confirmed requests, the object sending the request receives a MIB.ServiceError
message or a CMIP message (ROIVapdu, RORSapdu, or ROERapdu). On
unconfirmed requests, the object sending the request receives a MIB.ServiceAccept
message or a MIB.ServiceError message.

Since responses are never confirmed, the object sending the response receives a
MIB.ServiceAccept message or a MIB.ServiceError message.

Return codes are integers. A zero return code always indicates success with no
errors to report. The actual confirmation or error report is returned by CMIP services
by one of the following methods:

v If using CSA storage, information is returned through the read queue exit routine.
See “Read Queue Exit Routine for the CSA Interface” on page 87 for details.

v If using data space storage, information is returned by calling the dequeue and
release routines returned in the data space vector field. For more information
about these routines, refer to “Chapter 6. Dequeue and Release Routines for
Data Space Storage” on page 91.

Completion Information

Chapter 4. CMIP Services API Function Syntax and Operands 55

MIBConnect—MIB Connection Function

Purpose
The MIBConnect function returns a link identifier that is used to refer to the
connection in future calls to the API.

The MIBConnect function is a synchronous function. The return code from the
MIBConnect function indicates whether the function completed successfully.

The MIBConnect function opens an ACB on behalf of the caller. The ACB is closed
when the caller calls the MIBDisconnect function or when the task that called the
MIBConnect function terminates. The ACB is not closed when CMIP services
terminates or when VTAM terminates.

Declarations
The following declarations indicate the order of the parameters for this function.
typedef int MIBConnect_t(

unsigned int, /* API level - input */
int *, /* link identifier - output */
unsigned int, /* maximum outstanding invoke

identifiers - input */
const char *, /* application ACB name - input */
void *, /* TPEND routine pointer - optional input */
void *, /* read queue exit routine pointer - input */
unsigned int *, /* SMAE name buffer size - input/output */
char *, /* SMAE name buffer - output */
unsigned int *, /* System Object name buffer size -

input/output */
char *, /* System Object name buffer - output */
int, /* user data - input */
unsigned int *, /* OPEN ACB error value - output */
char **, /* VTAM release level - output */
const char *, /* password - optional input */
unsigned int, /* data space vector length - optional input */
ISTRIV10_t *, /* data space vector - optional input */
unsigned int, /* local identifier length - input */
unsigned int); /* connection options - input */

Parameters
API level

This parameter must be zero.

link identifier
MIBConnect returns a value in this field. The application program must provide
this value in subsequent API calls.

maximum outstanding invoke identifiers
This parameter determines how many unique invoke identifiers can be
generated locally by the API. Invoke identifiers are generated on all requests
that are sent to CMIP services and can be reused once the response has been
received by the requestor. API functions generate and clear invoke identifiers.
The caller of the API function does not need to generate or keep track of
outstanding invoke identifiers except where needed for its own
request/response correlation.

Note: Valid values are 256 to 65535. Input values are changed to meet the
minimum or maximum range.

Synchronous and Asynchronous Functions

56 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

application ACB name
This parameter is a pointer to a null-terminated string that represents the unique
name associated with application. The name must be unique among VTAM
resources and must be defined on the APPL definition statement. It must follow
the naming rules that apply to application programs that open an ACB.

The following APPL definition statement defines TOPOMGR as the application
program’s ACB name.
TOPOMGR APPL ACBNAME=TOPOMGR

See z/OS Communications Server: SNA Resource Definition Reference for
information about the ACBNAME operand on the APPL definition statement.

Note: The value of this parameter is converted to uppercase before being
passed to OPEN ACB.

TPEND routine pointer
This parameter is the address of an application assembler routine to be called
by VTAM if VTAM terminates before the application program terminates or
issues the MIBDisconnect function. Specify NULL if you do not wish to provide
a termination exit routine.

See z/OS Communications Server: SNA Programming for information about the
TPEND exit routine.

As with other TPEND exit routines, the application program should clean up in
an orderly manner for a normal HALT command. The application program
should deregister objects, discard EFDs, and disconnect.

In response to a HALT QUICK or HALT CANCEL command, the application
program should not attempt to clean up. It should only issue the MIBDisconnect
function.

Note: The ACBUSER field are set to the value of the user data parameter
supplied on the MIBConnect function when the TPEND exit routine is
scheduled.

read queue exit routine pointer
This parameter is the address of an application assembler routine to be called
by CMIP services when messages are to be received. See “Chapter 5. Read
Queue Exit Routine” on page 87 for information about the read queue exit.

SMAE name buffer size
This is the size of the buffer provided by the application for the SMAE name.
100 bytes is the recommended size for this buffer.

MIBConnect is set the value to the actual length (including the terminating zero)
on output.

If the buffer provided is not long enough, MIBConnect returns the
MB_ERR_STORAGE_TOO_SMALL return code. The application should
allocate a new buffer using the updated value of this parameter and call
MIBConnect again.

SMAE name buffer
MIBConnect places a pattern for building SMAE names in the storage pointed
to by this parameter. The application program can use this pattern with the C
Standard Library function sprintf to build the name of a SMAE name on this
host.

The following example SMAE name format as returned by MIBConnect:

Synchronous and Asynchronous Functions

Chapter 4. CMIP Services API Function Syntax and Operands 57

1.3.18.0.2.4.6=NETA;2.9.3.2.7.4=(name SSCP1A);1.3.18.0.2.4.12=%s

Assuming that format is the name of a character array containing the format
string and AE is the name of a character array to hold the resulting SMAE
name, the following code will build a SMAE name that could be used for the
RegisterAE special CMIP Services request.
sprintf(AE,format,"MyApplName");

The name of the default SMAE provided by CMIP Services has “OSISMASE”
as the final attribute value in the distinguished name.

System Object name buffer size
This is the size of the buffer provided by the application for the System Object.
The recommended size for this buffer is 100 bytes.

MIBConnect sets the value to the actual length (including the terminating zero)
on output.

If the buffer provided is not long enough, MIBConnect returns
MB_ERR_STORAGE_TOO_SMALL. The application program should then
allocate a new buffer using the updated value of this parameter and call
MIBConnect again.

System Object name buffer
MIBConnect places the name of the System Object into this buffer.

The System Object name should be used when creating local EFDs; EFDs are
named “under” the System Object.

user data
This four-byte field is provided to the application program on entry to the read
queue and to the TPEND exit routines.

OPEN ACB error value
When control is returned to the application program and the return code is
MB_ERR_CONNECT, the OPEN ACB error value parameter needs to be
evaluated.

The following list shows the OPEN ACB error values returned in the OPEN ACB
error value parameter.

ERROR Field
Meaning

0 (X'00')
OPEN successfully opened this ACB.

4 (X'04')
The ACB has been opened.

20 (X'14')
OPEN cannot be processed because of a temporary shortage of
storage.

36 (X'24')
The OPEN ACB failed for one of the following reasons:

v The password specified by the ACB did not match the corresponding
password in the APPL entry.

v The ACB did not specify a password and the APPL contains one.

v The security management product determined that the user is not
authorized to open the ACB.

Synchronous and Asynchronous Functions

58 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

70 (X'46')
OPEN was issued in an exit routine.

80 (X'50')
VTAM has not been included as part of the operating system. The fault
lies in the system definition procedures.

82 (X'52')
VTAM is included as part of the operating system, but the VTAM
operator issued a HALT command, and VTAM has shut down. You
cannot attempt to establish a session or communicate with any LUs.

84 (X'54')
Either the address supplied in the ACB’s APPLID field lies beyond the
addressable range of your application program, or no entry is found in
the VTAM configuration tables that matches the name indicated by the
ACB’s APPLID field (or supplied by the operating system). If the OPEN
macroinstruction is specified correctly, your system programmer might
have:

v Failed to include your application program’s symbolic name during
VTAM definition

v Improperly handled the symbolic name.

Refer to the description of the APPLID operand in the ACB
macroinstruction.

86 (X'56')
A match for your application program’s symbolic name is found, but it is
for an entry other than an APPL. If you specified this name in the ACB’s
APPLID field, verify that you have the correct name and handled this
name properly (see the APPLID operand of the ACB macroinstruction).
If the symbolic name is supplied by the operating system, the supplied
name is suspect.

88 (X'58')
Another ACB, already opened by VTAM, indicates the same application
program symbolic name that this ACB does. The system programmer
might have assigned the same symbolic name to two application
programs. This is valid only if the programs are not open concurrently.
Possibly the system operator initiated your program at the wrong time.

90 (X'5A')
No entry is found in the VTAM configuration tables that matches the
name indicated by the ACB’s APPLID field (or supplied by the operating
system). This error might have occurred for one of the following
reasons:

v The VTAM operator deactivated the APPL entry.

v The APPL entry was never created.

v If VTAM is trying to recover for persistent sessions, the application is
not in pending recovery state.

92 (X'5C')
VTAM is included as part of the operating system but inactive.

94 (X'5E')
The address supplied in the ACB’s APPLID field lies beyond the
addressable range of your application program.

Synchronous and Asynchronous Functions

Chapter 4. CMIP Services API Function Syntax and Operands 59

95 (X'5F')
The VTAM transient being used by the application for an OPEN ACB
does not match the level of VTAM.

96 (X'60')
An apparent system error occurred. Either there is a logic error in
VTAM, or there is an error in your use of OPEN or CLOSE that VTAM
did not properly detect. Save all applicable program listings and storage
dumps, and consult IBM Service.

98 (X'62')
The APPLID length byte is incorrectly specified.

100 (X'64')
The address supplied in the ACB’s PASSWD field lies beyond the
addressable range of your application program.

102 (X'66')
The PASSWD length byte is incorrectly specified.

104 (X'68')
The APPLID field in the ACB identifies an application program that is
defined with AUTH=PPO in its APPL definition statement. Another
program with the same authorization is active. Only one program
defined with AUTH=PPO can be active at a time.

106 (X'6A')
The address supplied in the ACB’s vector list field lies beyond the
addressable range of your application program.

108 (X'6C')
The VTAM ACB vector list length byte is incorrectly specified.

112 (X'70')
You attempted to open an ACB that is in the process of being closed.
This can occur when a VTAM application program job step or subtask is
canceled or terminates abnormally. The process of closing the ACB can
continue after the job step or subtask has actually terminated.
Subsequently, if the job step is restarted or the subtask is reattached
before the ACB closing process has been completed, an OPEN
macroinstruction that is then issued for that ACB fails.

114 (X'72')
This code occurs when an OPEN ACB fails for an LU 6.2 application
with VERIFY=OPTIONAL or VERIFY=REQUIRED for one of the
following reasons:

v The security management product is not installed.

v The security management product is not active.

v The security management product resource class APPCLU is not
active.

v The application represented by the ACB is not in the security
management product Started Procedures Table.

116 (X'74')
VTAM rejected the takeover by an alternate application because the
original application did not enable persistence, although it is capable of
persistence.

118 (X'76')
OPEN failed because the specified application is in a recovery pending

Synchronous and Asynchronous Functions

60 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

state and PERSIST=YES is not specified on the ACB that is being
opened. The OPEN may also fail if the application is in pending
terminate state and an active CDRSC with the same name has been
found in the sysplex.

120 (X'78')
ACB option mismatch between original application and opening
takeover or recovery application. One or more of the following can
apply:

v MACRF mismatch—both values must be either LOGON or NLOGON;
they cannot differ.

v NQNAMES mismatch—both applications must be specified as
NQNAMES=YES or NQNAMES=NO; they cannot differ.

v PERSIST mismatch—both applications must be specified as
PERSIST=YES.

v FDX mismatch—both applications must be specified as FDX=YES or
FDX=NO; they cannot differ.

v ISTVAC81 mismatch—the application capabilities vector provided by
the recovering application does not match that of the original
application.

140 (X'8C')
PERFMON=YES is coded on the ACB but the application is not CNM
and POA authorized.

188 (X'BC')
The ACB is in the process of being opened or closed by another
request.

244 (X'F4')
The application program is not authorized for SRBEXIT=YES. A request
to open an ACB whose corresponding APPL definition statement
specifies SRBEXIT=YES is rejected unless the application program is
APF authorized, or using key 0–7, or in supervisor state.

246 (X'F6')
NIB storage address not valid. A CNM authorized application program
either failed to supply an NIB pointer in the NIB field of the ACB, or the
NIB address supplied lies beyond the addressable range of the
application program.

250 (X'FA')
NIB options not valid. Either an application program without CNM
authorization (specified in its associated VTAM resource definition)
supplied an NIB pointer in its ACB; or, if CNM authorized, the
application program failed to supply valid NIB options on the NIB
macroinstruction.

254 (X'FE')
Duplicate unsolicited RU routing requested. The CNM routing table
indicated that this application program was to receive the same
unsolicited formatted requests that were already being routed to another
active CNM authorized application program. Only one application
program can be actively receiving a particular type of RU (for example,
RECFMS) at a time.

VTAM release level
Indicates the address of VTAM release-level vector. See z/OS Communications
Server: SNA Programming for more information about the format of this vector.

Synchronous and Asynchronous Functions

Chapter 4. CMIP Services API Function Syntax and Operands 61

password
Specifies a pointer to a null-terminated string. The application program should
specify NULL if no password is to be supplied. If a password is specified on
PRTCT operand of the APPL definition statement, MIBConnect fails unless a
matching password is provided in the password parameter. Password protection
is to prevent a program from running as a predefined application program
without authorization.

The value of the password is specified on the PRTCT operand of the APPL
definition statement. The value must conform to the rules for coding this
operand described in the z/OS Communications Server: SNA Resource
Definition Reference. The maximum length is 8 bytes. Valid passwords contain
only alphanumeric characters.

If application program’s ACB name is TOPOMGR, the APPL definition statement
with a password is similar to the following example:
TOPOMGR APPL ACBNAME=TOPOMGR,PRTCT=password

Note: The value of this parameter is converted to uppercase before being
passed to OPEN ACB. This is because VTAM converts the related
definition to uppercase but does not convert OPEN ACB parameters to
uppercase. Without the conversion to uppercase by MIBConnect, this
function would fail if the application provided a lowercase value for this
parameter.

data space vector length
If using data space storage, specify a value that is at least the size of
(ISTRIV10_t), which is the length of the data space vector. If you are using
common storage area storage, specify 0. For an explanation of these types of
storage, see “Common Storage Area Storage or Data Space Storage?” on
page 41.

data space vector
If you are using data space storage, specify the address of the data space
vector (ISTRIV10_t). If you are using the CSA interface, specify NULL. If the
MIBConnect function is successful, the fields in this control block are set by
VTAM.

The format of the data space vector is:

Offset Meaning

0 (X'00')
Vector Length

1 (X'01')
Vector identifier = X'10'

2 (X'02')
Name of data space. (The field is 8 bytes long.)

10 (X'0A')
Address of interface control block (ISTNMICB)

14 (X'0E')
STOKEN for data space interface. This value is used in ALESERV MVS
macro to obtain the ALET value.

22 (X'16')
Reserved

Synchronous and Asynchronous Functions

62 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

26 (X'1A')
Address of the dequeue routine

30 (X'1E')
Address of the release routine

The ISTNMICB structure is allocated in the data space. The user application
must copy this structure into private storage for any future references because
the data space can be deleted at any time if VTAM is terminated. Referring to
the original after the data space has been deleted results in an abend. By
contrast, calling the dequeue and release routines using private copies of their
addresses causes an error indication to be returned. It is not valid to refer
directly to the data space through a means other than the dequeue or release
routine. Those routines should not be called after VTAM is terminated or after
issuing the MBDisconnect function.

The format of the interface control block (ISTNMICB) is:

Offset Meaning

0 (X'00')
Reserved

4 (X'04')
Address of the dequeue routine

8 (X'08')
Address of the release routine

local identifier length
Indicates the size of the local identifiers for this application program. The range
is 1—8.

connection options
Specify one of the following values:

NO_CONNECT_OPTIONS
Indicates that the application program is to use default behaviors for the
connection with CMIP services.

SHORT_NAMES
Indicates that CMIP services is to send distinguished names to the
application program in the short form. Otherwise, CMIP services sends
distinguished names to the application program in the long form. In either
case, the application program can format distinguished names in strings
sent through the API functions in either short or long form.

For a description of short and long names, refer to “What Form of
Distinguished Name?” on page 44.

Return Codes
0 The MIBConnect function was successful, but warning messages might

have been issued. Check the OPEN ACB error value parameter for warning
messages. See the list of OPEN ACB error values on page 58.

MB_ERR_ALLOC
An error occurred allocating storage. If MB_ERR_ALLOC is received by the
application program from an API function and there is a corresponding
REQS record in the VIT with a nonzero return code, the LPBUF pool is not
large enough and should be increased.

Synchronous and Asynchronous Functions

Chapter 4. CMIP Services API Function Syntax and Operands 63

MB_ERR_CMIP_SERVICES_INACTIVE
CMIP services is inactive.

If using common storage area storage, the read queue exit routine stops
functioning.

If using data space storage, messages are not put on the data space.

MB_ERR_CONNECT
The MIBConnect was not successful. If the error condition indicated by the
OPEN ACB error value parameter can be eliminated, another MIBConnect
can be issued.

MB_ERR_INVALID_DS_VECTOR
The value specified for the data space vector length parameter is valid, but
the data space vector parameter is not provided.

MB_ERR_INVALID_API_LEVEL
An incorrect value for the API level parameter was passed.

MB_ERR_INVALID_APPL_NAME
The value specified for the application name parameter is longer than 8
characters.

MB_ERR_INVALID_CONNECT_OPTIONS
The value specified on the connection options parameter is not valid.
Specify either NO_CONNECT_OPTIONS or SHORT_NAMES as the value
for the connection options parameter.

MB_ERR_INVALID_DS_VECTOR_SIZE
If the data space vector parameter is specified, the data space vector
length must be at least the size of (ISTRIV10_t), which is the length of the
data space vector.

MB_ERR_INVALID_ENVIRONMENT
Data space storage was specified on the data space vector length
parameter, but the environment does not support data spaces.

MB_ERR_INVALID_ERROR_FLAG
The OPEN ACB error value parameter does not point to a valid storage
location.

MB_ERR_INVALID_LINK_ID
The value specified on the link identifier parameter does not refer to a valid
connection.

MB_ERR_INVALID_LOCAL_ID_SIZE
The value specified on the local identifier length parameter is outside the
acceptable range of 1—8.

MB_ERR_INVALID_MAX_INVOKE_IDS
The value specified for the maximum outstanding requests parameter is not
valid.

MB_ERR_INVALID_PASSWORD
The value specified for the password parameter is not between 0 and 8
characters.

MB_ERR_INVALID_READ_QUEUE_EXIT
The read queue exit routine was not provided.

MB_ERR_INVALID_RELEASE_LEVEL
The value specified for the VTAM release level parameter is not valid.

Synchronous and Asynchronous Functions

64 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

MB_ERR_INVALID_SMAE_NAME
The value specified for the SMAE name buffer parameter is not valid.

MB_ERR_INVALID_SMAE_NAME_SIZE
The buffer sent to the MIBConnect function is too small to accommodate
the name of the SMAE. The actual amount of storage required is returned
in the SMAE name length parameter.

MB_ERR_INVALID_SYSTEM_NAME
The value specified for the system object name buffer parameter is not
valid.

MB_ERR_INVALID_SYSTEM_NAME_SIZE
The buffer sent to the MIBConnect function is too small to accommodate
the name of the system object. The actual amount of storage required is
returned in the system object name buffer size parameter.

MB_ERR_INVALID_TPEND_EXIT
The TPEND exit routine is not valid.

MB_ERR_INVALID_USER_DATA
The user data parameter was not provided.

MB_ERR_VTAM_INACTIVE
VTAM is inactive.

Example of Function in an Application Program
The following example shows how the MIBConnect function can be coded in an
application program.

typedef struct ReadQueueExitData_tag
{

int ECB;
int ReasonCode;
char Buffer ??(16384??);

} ReadQueueExitData_t;

typedef void *LocalId_t;

char SMAE ??(100??);
char SystemObject ??(100??);
char *VTAM_Release;
const char *ApplName;
const char *Password;
int LinkId;
int rc;
ReadQueueExitData_t ReadQueueExitData;
size_t SMAE_Size, SystemObjectSize;
unsigned int ACB_Info;
extern void ACYCMS2A(void);
extern void ACYCMS6A(void);

rc = APIs.MIBConnect(0, /* always zero for this release */
&LinkId, /* MIBConnect will fill in LinkId

with a handle to the
connection. */

65536, /* maximum number of outstanding
requests */

ApplName, /* ACB name */
(void *)ACYCMS6A, /* TPEND exit */
(void *)ACYCMS2A, /* address of the Read

Queue Exit */
&SMAE_Size, /* On input, this is the size of

the SMAE buffer. On output,
this is the length of the SMAE

Synchronous and Asynchronous Functions

Chapter 4. CMIP Services API Function Syntax and Operands 65

name. */
SMAE, /* This is where MIBConnect will

store the SMAE name (if there
is enough room). */

&SystemObjectSize,/* On input, this is the
size of the System Object name
buffer. On output, this is the
length of the System Object
name. */

SystemObject, /* This is where MIBConnect will
store the System Object name
(if there is enough room). */

(int)&ReadQueueExitData, /* This will be provided
to this application's read
queue exit by CMIP Services. */

&ACB_Info, /* If an error occurs opening the
ACB, this will contain the
OPEN ACB error code. */

&VTAM_Release, /* MIBConnect will store the
address of the VTAM release
level here. */

Password, /* ACB password */
0, /* dataspace not used */
NULL, /* dataspace not used */
sizeof(LocalId_t), /* size of local ids

for all objects registered by
this application */

0); /* no special options specified */

Synchronous and Asynchronous Functions

66 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

MIBDisconnect—MIB Disconnection Function

Purpose
The MIB disconnection function sends a message to the API to terminate the
session and clear all outstanding requests on the connection. There might be many
objects registered under one MIB connection and all outstanding requests for those
objects are cleared by the MIB disconnect service. The application program using
the CMIP services connection should not terminate the connection unless all
outstanding requests might be lost without damage to the registered objects.

MIBDisconnect is a synchronous service. The return code from the MIBDisconnect
function indicates whether the function completed successfully.

If you want to call a MIBConnect function with the same application ACB name as
the ACB name used on a previous MIBConnect function, you must call the
MIBDisconnect function before calling the MIBConnect function.

The MIBConnect function opens an ACB on behalf of the caller. The ACB is closed
when the caller calls the MIBDisconnect function or when the task that called the
MIBConnect function terminates. The ACB is not closed when CMIP services
terminates or when VTAM terminates.

If using data space storage, the data space is freed by VTAM. The application
program must not call the data space storage dequeue and release routines after it
calls the MIBDisconnect function, because the results are unpredictable and the
application program might abend.

Declarations
The following declarations indicate the order of the parameters for this function.
typedef int MIBDisconnect_t(

int, /* link identifier - input */
unsigned int *); /* CLOSE ACB error value - output */

Parameters
link identifier

Specifies the link identifier returned by the MIBConnect function.

CLOSE ACB error value
When control is returned to the application program and the return code is
MB_ERR_MIBDISCONNECT, this flag needs to be evaluated.

The following list shows the CLOSE ACB error values returned in the CLOSE
ACB error value parameter.

ERROR Field
Meaning

0 (X'00')
CLOSE successfully closed the ACB.

4 (X'04')
A CLOSE macroinstruction has been successfully issued for this ACB
(or the ACB has never been opened in the first place).

20 (X'14')
CLOSE cannot be processed because of a temporary shortage of
storage.

Synchronous and Asynchronous Functions

Chapter 4. CMIP Services API Function Syntax and Operands 67

64 (X'40')
Outstanding OPNDST OPTCD=ACQUIRE is not released.

66 (X'42')
The ACB has been closed, but an apparent system error has prevented
the successful termination of one or more of the sessions that the
application program has. There is a logic error in VTAM; consult IBM
Service. The LUs that have not had their sessions terminated are not
available to other application programs, and LUs with which you were
requesting a session when the CLOSE macroinstruction was issued are
likewise unavailable. You can notify the VTAM operator (while the
program is running) of the situation so that the operator can make the
LUs available to other application programs.

70 (X'46')
CLOSE was not issued in the mainline program. OPEN and CLOSE
cannot be issued in any exit routine.

76 (X'4C')
This application program is authorized to issue VTAM operator
commands and receive VTAM messages. A CLOSE was issued, but
messages are still queued for it, or VTAM is waiting for a reply, or both.
See z/OS Communications Server: SNA Programming for more
information.

80 (X'50')
VTAM is no longer included as part of the operating system.

96 (X'60')
An apparent system error occurred. Either there is a logic error in
VTAM; or there is an error in your use of OPEN or CLOSE that VTAM
did not properly detect. Save all applicable program listings and storage
dumps, and consult IBM Service.

112 (X'70')
CLOSE was issued while the program was in the process of terminating
abnormally. The CLOSE is not necessary because the ACB is closed by
VTAM when the task terminates.

188 (X'BC')
The ACB is in the process of being opened or is in the process of being
closed by another request.

Return Codes
0 The MIBDisconnect was successful, but warning messages might have

been issued. Check the CLOSE ACB error value parameter for warning
messages. See the list of CLOSE ACB error values on page 67.

MB_ERR_MIBDISCONNECT
The MIBDisconnect function was not successful. If the error condition
indicated by the CLOSE ACB error value parameter can be eliminated,
another MIBDisconnect can be issued.

MB_ERR_INVALID_LINK_ID
The value specified on the link identifier parameter does not refer to a valid
connection.

MB_ERR_ALLOC
An error occurred allocating storage. If MB_ERR_ALLOC is received by the
application program from an API function and there is a corresponding

Synchronous and Asynchronous Functions

68 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

REQS record in the VIT with a nonzero return code, the LPBUF pool is not
large enough and should be increased.

MB_ERR_INVALID_ERROR_FLAG
The CLOSE ACB error value parameter does not point to a valid storage
location.

Example of Function in an Application Program
The following example shows how the MIBDisconnect function can be coded in an
application program.
int LinkId;
int rc;
unsigned int ACB_Info;

rc = APIs.MIBDisconnect(LinkId, /* This is the handle returned by
MIBDisconnect. */

&ACB_Info); /* If an error occurs closing the
ACB, MIBDisconnect will store
the CLOSE ACB error code here.*/

Synchronous and Asynchronous Functions

Chapter 4. CMIP Services API Function Syntax and Operands 69

MIBSendCmipRequest—CMIP Request Function

Purpose
Use this function when an application program or object is sending a CMIP request.

The MIBSendCmipRequest function queues a request to CMIP services. Use the
MIBSendCmipRequest function for CMIP requests instead of the MIBSendRequest
function, to allow consistent manipulation of messages.

Declarations
The following declarations indicate the order of the parameters for this function.
typedef int MIBSendCmipRequest_t(

int, /* link identifier - input */
unsigned int, /* argument type - input */
const char *, /* argument - input */
const void *, /* local identifier - input */
const char *, /* source - input */
unsigned int, /* destination type - input */
const char *, /* destination - input */
unsigned int *); /* returned invoke identifier -

output */

Parameters
link identifier

Specifies the link identifier returned by the MIBConnect function.

argument type
This should be the CMIP operation value of the operation being requested.

The operation values are given in ACYIDCMS.

argument
This null-terminated string contains the bulk of the request. The ASN.1 type is
determined by the CMIP operation value of the request, and is found in the
ANY DEFINED BY table for the operation value in ACYIDCMS.

local identifier
Pointer to the local identifier of the object that generated this request. The same
local identifier appears in a subsequent response.

source
The distinguished name of the originator of the request. This can be used to
override the source of the message. This is used to resolve any appearance of
the MIB variable distinguished name. Specify NULL if you do not choose to
specify a value.

destination type
This specifies the type of destination data that is being proved in the destination
argument. The valid values are DS_NOT_PROVIDED, DS_FULL_DN,
DS_ASSOC_HANDLE, and DS_AE_TITLE.

If this field is set to DS_NOT_PROVIDED, then the stack uses the object name
in the CMIP parameter as the destination object name.

destination
This specifies the destination of a CMIP string. Specify NULL if the destination
type parameter is DS_NOT_PROVIDED. Otherwise, specify the pointer to a
distinguished name, association handle, or application entity title.

Synchronous and Asynchronous Functions

70 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

returned invoke identifier
Specifies the invoke identifier. The invoke identifier is used to correlate this
request with a response that arrives subsequently.

Return Codes
0 The function was successful.

MB_ERR_ALLOC
An error occurred allocating storage. If MB_ERR_ALLOC is received by the
application program from an API function and there is a corresponding
REQS record in the VIT with a nonzero return code, the LPBUF pool is not
large enough and should be increased.

MB_ERR_INVALID_ARGUMENT
The argument parameter was not provided.

MB_ERR_INVALID_ARGUMENT_TYPE
An incorrect argument type parameter was provided.

MB_ERR_CMIP_SERVICES_INACTIVE
CMIP services is inactive.

If using common storage area storage, the read queue exit routine stops
functioning.

If using data space storage, messages are not put on the data space.

MB_WARN_DATA_SPACE_FULL
If using a data space and the data space is out of storage, this warning is
returned to remind the application program that no messages will be
returned to this application program. This message will still be routed to
CMIP services.

MB_ERR_INVALID_DEST
The value of the destination parameter is inconsistent with the value of the
destination type parameter. This return code is returned if, for example,
destination type is DS_ASSOC_HANDLE, but destination is NULL.

MB_ERR_INVALID_DEST_TYPE
An incorrect destination type parameter was passed.

MB_WARN_EXIT_FAILURE
If using common storage area storage and the application program has
indicated that it has had an unrecoverable error when returning to the read
queue exit routine, this warning is returned to remind the application
program that no messages will be returned to the application program. This
message will still be routed to CMIP services.

MB_ERR_INVALID_LINK_ID
The value specified on the link identifier parameter does not refer to a valid
connection.

MB_ERR_INVALID_INVOKE_ID
The invoke identifier parameter was not provided.

MB_ERR_LOCAL_ID_MISSING
A local identifier was not provided.

MB_ERR_INVALID_MAX_INVOKE_IDS
The value specified for the maximum outstanding requests parameter is not
valid.

Synchronous and Asynchronous Functions

Chapter 4. CMIP Services API Function Syntax and Operands 71

MB_ERR_MSG_MISSING
The message parameter was not provided.

MB_ERR_TRANSMIT
An apparent error occurred. Either there is a logic error in VTAM, or the
MIBDisconnect function has been issued, but it has not completed.

MB_ERR_VTAM_INACTIVE
VTAM is inactive.

Example of Function in an Application Program
The following example shows how the MIBSendCmipRequest function can be
coded in an application program.
char CMIP_StringArgument ??(512??);
int LinkId;
int rc;
LocalId_t *MyObjectId;
unsigned int InvokeId;

rc = APIs.MIBSendCmipRequest(LinkId, /* handle returned by
MIBConnect */

3, /* operation value is GET */
CMIP_StringArgument,
&MyObjectId,
NULL,
DS_NOT_PROVIDED,
NULL,
&InvokeId);

Synchronous and Asynchronous Functions

72 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

MIBSendCmipResponse—CMIP Response Function

Purpose
Use this function when an application program or object is sending a CMIP
response. MIBSendCmipResponse queues responses to CMIP services associated
with requests that were previously received by the application program from CMIP
services.

Declarations
The following declarations indicate the order of the parameters for this function.
typedef int MIBSendCmipResponse_t(

int, /* link identifier - input */
unsigned int, /* invoke identifier - input */
unsigned int, /* last in chain - input */
unsigned int, /* success - input */
unsigned int, /* argument type - input */
const char *, /* argument - input */
const void *, /* local identifier input */
const char *, /* source - input */
const char *, /* association handle - input */
unsigned int *); /* returned invoke identifier -

output */

Parameters
link identifier

Specifies the link identifier returned by the MIBConnect function.

invoke identifier
This is the invoke identifier of the request which is being responded to with this
API call.

last in chain
This indicates to CMIP services whether this message is the last response that
is generated by this application program for this request. This allows CMIP
services to construct the correct message (linked reply or response). A nonzero
value indicates that the response is the last in a chain of responses
(RORSapdu or ROERapdu). A zero value indicates that the response is not the
last in a chain of responses (ROIVapdu—linked reply).

success
This indicates whether the response is positive or negative. This indicates to
CMIP services how to interpret the next parameter. A nonzero value indicates
that the response represents a positive, successful response. A zero value
indicates that the response is negative.

Note: If the last in chain parameter is zero, the success parameter must be
nonzero. A linked reply cannot be sent as an error.

argument type
For linked-replies (messages with the last in chain parameter set to zero), this
should be two, the CMIP operation value for a linked-reply.

For RORSapdu messages, this should be the CMIP operation value of the
operation being responded to.

For ROERapdu messages, this should be the CMIP error value.

The operation values and error values are given in ACYIDCMS.

Synchronous and Asynchronous Functions

Chapter 4. CMIP Services API Function Syntax and Operands 73

argument
This null-terminated string contains the bulk of the CMIP string which is built by
CMIP services, on behalf of the application program, for this API function.

For ROIVapdu messages (when the last in chain parameter is zero), this string
is used for the value of the argument parameter.

For RORSapdu messages (when the last in chain parameter is nonzero and the
success parameter is nonzero), this string is used for the value of the result
parameter.

For ROERapdu messages (when the last in chain parameter is nonzero and the
success parameter is zero), this string is used for the value of the parameter.

local identifier
Pointer to the local identifier of the object that is responding. Specify the same
identifier as the one specified in the request.

source
The distinguished name of the originator of the request. This can be used to
override the source of the message. This is used to resolve any appearance of
the MIB variable distinguished name. Specify NULL if you do not choose to
specify a value.

association handle
This is the association identifier of the association that is to be used to send the
response. It is required and must be the same as the association handle that
was received on the message that is being answered.

returned invoke identifier
Specifies the invoke identifier. The invoke identifier is used to correlate this
request with a response that arrives subsequently. This will be filled in only for
linked replies. For linked replies, the last in chain parameter is zero.

Return Codes
0 The function was successful.

MB_ERR_ALLOC
An error occurred allocating storage. If MB_ERR_ALLOC is received by the
application program from an API function and there is a corresponding
REQS record in the VIT with a nonzero return code, the LPBUF pool is not
large enough and should be increased.

MB_ERR_ARGUMENT_MISSING
The argument parameter was not provided.

MB_ERR_ARGUMENT_TYPE_MISSING
An argument type parameter was not provided.

MB_ERR_ARGUMENT_TYPE_INVALID
An incorrect argument type parameter was provided.

MB_ERR_ASSOC_HANDLE_MISSING
The association handle parameter was not provided.

MB_ERR_CMIP_SERVICES_INACTIVE
CMIP services is inactive.

If using common storage area storage, the read queue exit routine stops
functioning.

If using data space storage, messages are not put on the data space.

Synchronous and Asynchronous Functions

74 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

MB_WARN_DATA_SPACE_FULL
If using a data space and the data space is out of storage, this warning is
returned to remind the application program that no messages will be
returned to this application program. This message will still be routed to
CMIP services.

MB_ERR_DEST_TYPE_INVALID
An incorrect destination type parameter was passed.

MB_WARN_EXIT_FAILURE
If using common storage area storage and the application program has
indicated that it has had an unrecoverable error when returning to the read
queue exit routine, this warning is returned to remind the application
program that no messages will be returned to the application program. This
message will still be routed to CMIP services.

MB_ERR_INVALID_LINK_ID
The value specified on the link identifier parameter does not refer to a valid
connection.

MB_ERR_INVOKEID_MISSING
The invoke identifier parameter was not provided.

MB_ERR_LAST_IN_CHAIN_MISSING
The last in chain parameter was not provided.

MB_ERR_LOCAL_ID_MISSING
A local identifier was not provided.

MB_ERR_MAX_OUTSTANDING
The value specified for the maximum outstanding requests parameter is not
valid.

MB_ERR_SUCCESS_MISSING
The success argument parameter was not provided.

MB_ERR_TRANSMIT
An apparent error occurred. Either there is a logic error in VTAM, or the
MIBDisconnect function has been issued, but it has not completed.

MB_ERR_VTAM_INACTIVE
VTAM is inactive.

Example of Function in an Application Program
The following example shows how the MIBSendCmipResponse function can be
coded in an application program.
#include "acyaphdh"

#define FALSE 0
#define TRUE 1

extern void *MyLocalId_ptr;
int rc;
int LinkId;
unsigned int InvokeId;
MIBSendCmipResponse_t *MIBSendCmipResponse;

/*******************************/
/* Send accessDenied ROERapdu. */
/*******************************/

rc = MIBSendCmipResponse(LinkId,
InvokeId, /* the invoke identifier from the request */

Synchronous and Asynchronous Functions

Chapter 4. CMIP Services API Function Syntax and Operands 75

TRUE, /* last in chain (not linked reply) */
FALSE, /* not successful (i.e., ROERapdu) */
7,
"(invokeID 1179660, error-value 2)",
MyLocalId_ptr,
NULL,
"a1", /* association handle of the request

being answered */
NULL); /* no new invoke identifier since

last-in-chain is TRUE */

Synchronous and Asynchronous Functions

76 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

MIBSendDeleteRegistration—Deregistration Function

Purpose
The MIBSendDeleteRegistration deletes a registered object. Any objects registered
under the object being deleted are also deleted. An object’s registration can be
removed by local identifier or by distinguished name. Only one of them is required.
Both can be provided.

A non-NULL value in the distinguished name parameter indicates that a valid
distinguished name was provided.

Declarations
The following declarations indicate the order of the parameters for this function.
typedef int MIBSendDeleteRegistration_t(

int, /* link identifier - input */
unsigned int *, /* returned invoke

identifier - output */
const void *, /* local identifier - optional

input */
const char *); /* distinguished name - optional

input */

Parameters
link identifier

Specifies the link identifier returned by the MIBConnect function.

returned invoke identifier
Specifies the invoke identifier. The invoke identifier is used to correlate this
request with a response that arrives subsequently.

local identifier
Pointer to the local identifier of the object that is to be deleted. Specify NULL for
the local identifier parameter if only the distinguished name is provided.

distinguished name
This is the distinguished name of the object instance being deleted. If you
provide a local identifier, the distinguished name is optional. Specify NULL if
you do not provide a distinguished name.

If you specify a name for this parameter, CMIP services uses the name to look
up the object instance to be deleted or to verify that the object instance
selected with the local identifier has a matching name.

Return Codes
0 The function was successful.

MB_ERR_ALLOC
An error occurred allocating storage. If MB_ERR_ALLOC is received by the
application program from an API function and there is a corresponding
REQS record in the VIT with a nonzero return code, the LPBUF pool is not
large enough and should be increased.

MB_ERR_CMIP_SERVICES_INACTIVE
CMIP services is inactive.

If using common storage area storage, the read queue exit routine stops
functioning.

Synchronous and Asynchronous Functions

Chapter 4. CMIP Services API Function Syntax and Operands 77

If using data space storage, messages are not put on the data space.

MB_WARN_DATA_SPACE_FULL
If using a data space and the data space is out of storage, this warning is
returned to remind the application program that no messages will be
returned to this application program. This message will still be routed to
CMIP services.

MB_WARN_EXIT_FAILURE
If using common storage area storage and the application program has
indicated that it has had an unrecoverable error when returning to the read
queue exit routine, this warning is returned to remind the application
program that no messages will be returned to the application program. This
message will still be routed to CMIP services.

MB_ERR_INVALID_LINK_ID
The value specified on the link identifier parameter does not refer to a valid
connection.

MB_ERR_TRANSMIT
An apparent error occurred. Either there is a logic error in VTAM, or the
MIBDisconnect function has been issued, but it has not completed.

MB_ERR_VTAM_INACTIVE
VTAM is inactive.

Example of Function in an Application Program
The following example shows how the MIBSendDeleteRegistration function can be
coded in an application program.
#include "acyaphdh.h"

int rc;
int LinkId;
MIBSendDeleteRegistration_t *MIBSendDeleteRegistration;

/***/
/* Delete a registration for the object with local */
/* identifier MyLocalId. */
/***/

rc = MIBSendDeleteRegistration(LinkId,
&InvokeId,
&MyLocalId,
NULL);

Synchronous and Asynchronous Functions

78 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

MIBSendRegister—MIB Asynchronous Registration Function

Purpose
The MIB registration function must be called at least once in order for an application
to access CMIP services or receive unsolicited messages. The MIB registration
function can be called many times on any given MIB connection. For each call to
the MIB registration function a unique local identifier must be provided by the caller.
The local identifier can be used to distribute messages to the appropriate objects as
they arrive over the connection. Because the local identifier must be provided on
the registration call, it could be a pointer to a control block that could be directly
referred to from the API header. The application program might also provide a
handle for secondary routing. The size of the local identifiers is specified on the
local identifier length parameter of the MIBConnect function.

A registered object can be a create handler for zero or more object classes. In other
words, it can be responsible for handling CMIP create requests for instances of
certain classes.

An application program specifies this property for an object by providing a list of
classes on the call to MIBSendRegister when registering the object that is a create
handler.

The responsibilities of a create handler are described in “Create Handlers” on
page 13, which describes create processing.

A registered object is an instance of one specific object class. However, it can act
like an instance of other classes if appropriate. Allomorphism is the term used to
describe an object which can act like an instance of more than one class. The usual
reason for allomorphism is when an object acts like an instance of the classes of
which its class is a subclass.

An application program specifies this property for an object by providing a list of
classes on the call to MIBSendRegister when registering the object which acts
allomorphic to other classes.

A response will be generated by CMIP services for each call to the CMIP services
registration function. The invoke identifier field in the API header can be used to
correlate the response to the initial registration request. The response can be of two
possible types. If the registration was successful the response will be of type
“MIB.RegisterAccept”, otherwise the response will be of type “MIB.ServiceError”

The application program must correlate the response from CMIP services to the
registration request, using the invoke identifier, and determine by the message type
in the API header whether or not the registration completed successfully.

Declarations
The following declarations indicate the order of the parameters for this function.
typedef int MIBSendRegister_t(

int, /* link identifier - input */
unsigned int *, /* returned invoke identifier -

output */
const void *, /* local identifier - input */
const char *, /* object class - input */
int, /* name type - input */
const char *, /* distinguished name - input */

Synchronous and Asynchronous Functions

Chapter 4. CMIP Services API Function Syntax and Operands 79

const char *, /* name binding object
identifier - input */

unsigned int, /* capability flags - input */
unsigned int, /* allomorphs count - input */
char **, /* allomorphs array - input */
unsigned int, /* create handlers count - input */
char **); /* create handlers array - input */

Parameters
link identifier

Specifies the link identifier returned by the MIBConnect function.

returned invoke identifier
Specifies the invoke identifier. The invoke identifier is used to correlate this
request with a response that arrives subsequently.

local identifier
Pointer to the local identifier of the object that is to be registered. Specify NULL
for the local identifier parameter if only the distinguished name is provided.

object class
This parameter is the registered class of the object being registered. The class
is required on all registration calls.

name type
This must be DN_OF_INSTANCE.

distinguished name
This is the distinguished name of the object instance being registered. To use
the distinguished name in future calls to CMIP services, the &DN MIB variable
can be used to refer to the distinguished name associated with the object
instance (see “MIB Variable Format” on page 98).

name binding object identifier
This is the object identifier for the name binding to be used. If NULL is specified
for this parameter, CMIP services chooses a name binding.

capability flags
A parameter used to specify special properties of the object being registered.

The value should be NO_CAPABILITIES if no special properties are desired or
SUBTREE_MANAGER if the object being registered should be a manager of
the subtree with its distinguished name as the root.

allomorphs count
This is the number of classes to which this object is allomorphic.

allomorphs array
This is an array of pointers to character strings, each of which is the object
identifier of a class to which this object is allomorphic.

create handlers count
This is the number of classes for which this object is a create handler.

create handlers array
This is an array of pointers to character strings, each of which is the object
identifier of a class for which this object is a create handler.

Return Codes
0 The function was successful.

Synchronous and Asynchronous Functions

80 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

MB_ERR_ALLOC
An error occurred allocating storage. If MB_ERR_ALLOC is received by the
application program from an API function and there is a corresponding
REQS record in the VIT with a nonzero return code, the LPBUF pool is not
large enough and should be increased.

MB_ERR_INVALID_CAPABILITY_FLAGS
The value specified for the capability flags parameter is not valid.

MB_ERR_CMIP_SERVICES_INACTIVE
CMIP services is inactive.

If using common storage area storage, the read queue exit routine stops
functioning.

If using data space storage, messages are not put on the data space.

MB_ERR_DISTINGUISHED_MISSING
The distinguished name parameter was not provided.

MB_ERR_INVALID_LINK_ID
The value specified on the link identifier parameter does not refer to a valid
connection.

MB_ERR_INVALID_INVOKE_ID
The invoke identifier parameter was not provided.

MB_ERR_LOCAL_ID_MISSING
A local identifier was not provided.

MB_ERR_MAX_OUTSTANDING
The value specified for the maximum outstanding requests parameter is not
valid.

MB_ERR_NOT_REGISTERED
For common storage area storage, the application program has indicated
that it has had an unrecoverable error when returning to the read queue
exit routine or that the data space is out of storage. The registration will not
be allowed.

MB_ERR_OBJECT_CLASS_MISSING
The object class name parameter was not provided.

MB_ERR_TRANSMIT
An apparent error occurred. Either there is a logic error in VTAM, or the
MIBDisconnect function has been issued, but it has not completed.

MB_ERR_VTAM_INACTIVE
VTAM is inactive.

Example of Function in an Application Program
The following example shows how the MIBSendRegister function can be coded in
an application program.
char MyObjectName ??(120??);
int LinkId;
int rc;
LocalId_t *MyObjectId;
unsigned int InvokeId;

rc = APIs.MIBSendRegister(LinkId, /* This is the handle returned by
MIBConnect. */

&InvokeId, /* MIBSendRegister will store an
invoke id, or correlator, for

Synchronous and Asynchronous Functions

Chapter 4. CMIP Services API Function Syntax and Operands 81

the registration request here.*/
&MyObjectId, /* This is the address of

the local id to be associated
with this object. */

"1.3.18.0.0.2155", /* This is the object
class of this object. */

DN_OF_INSTANCE, /* This parameter must
have this value. */

MyObjectName, /* This is the distinguished
name of this object. */

NULL, /* Use default name binding. */
0, /* no special capabilities */
0, /* no allomorphs */
NULL, /* no allomorphs */
0, /* not a create handler for any

class */
NULL); /* not a create handler */

Synchronous and Asynchronous Functions

82 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

MIBSendRequest—MIB Queue Request Function

Purpose
Use this function when an application program needs to send VTAM-specific
requests. For a list of these requests, refer to “Chapter 10. VTAM-Specific Requests
and Responses” on page 133.

Declarations
The following declarations indicate the order of the parameters for this function.
typedef int MIBSendRequest_t(

int, /* link identifier - input */
unsigned int *, /* returned invoke identifier -

output */
const void *, /* local identifier - input */
const char *); /* message - input */

Parameters
link identifier

Specifies the link identifier returned by the MIBConnect function.

returned invoke identifier
Specifies the invoke identifier. The invoke identifier is used to correlate this
request with a response that arrives subsequently.

local identifier
Pointer to the local identifier of the object that is issuing the request.

message
This is a pointer to a formatted string which contains the string header and the
request data.

Return Codes
0 The function was successful.

MB_ERR_ALLOC
An error occurred allocating storage. If MB_ERR_ALLOC is received by the
application program from an API function and there is a corresponding
REQS record in the VIT with a nonzero return code, the LPBUF pool is not
large enough and should be increased.

MB_ERR_CMIP_SERVICES_INACTIVE
CMIP services is inactive.

If using common storage area storage, the read queue exit routine stops
functioning.

If using data space storage, messages are not put on the data space.

MB_WARN_DATA_SPACE_FULL
If using a data space and the data space is out of storage, this warning is
returned to remind the application program that no messages will be
returned to this application program. This message will still be routed to
CMIP services.

MB_WARN_EXIT_FAILURE
If using common storage area storage and the application program has
indicated that it has had an unrecoverable error when returning to the read
queue exit routine, this warning is returned to remind the application

Synchronous and Asynchronous Functions

Chapter 4. CMIP Services API Function Syntax and Operands 83

program that no messages will be returned to the application program. This
message will still be routed to CMIP services.

MB_ERR_INVALID_INVOKE_ID
The invoke identifier parameter was not provided.

MB_ERR_LOCAL_ID_MISSING
A local identifier was not provided.

MB_ERR_INVALID_MAX_INVOKE_IDS
The value specified for the maximum outstanding requests parameter is not
valid.

MB_ERR_MSG_MISSING
The message parameter was not provided.

MB_ERR_TRANSMIT
An apparent error occurred. Either there is a logic error in VTAM, or the
MIBDisconnect function has been issued, but it has not completed.

MB_ERR_VTAM_INACTIVE
VTAM is inactive.

Example of Function in an Application Program
The following example shows how the MIBSendRequest function can be coded in
an application program.
int LinkId;
unsigned int InvokeId;
MIBSendRequest_t *MIBSendRequest;

/***/
/* Retrieve information on the association with handle a1. */
/***/

rc = MIBSendRequest(LinkId,
&InvokeId,
&MyLocalId,
"msg ACF.GetAssociationInfo("
"handle 'a1', info 11111111)");

Synchronous and Asynchronous Functions

84 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

MIBSendResponse—MIB Queue Response Function

Purpose
Use this function when an application program needs to send a VTAM-specific
response to CMIP services. This function is not used to send ROIVapdu,
RORSapdu, or ROERapdu responses.

One message that is sent by MIBSendResponse is MIB.DeleteResponse. For a list
of these responses, refer to “Chapter 10. VTAM-Specific Requests and Responses”
on page 133.

Declarations
The following declarations indicate the order of the parameters for this function.
typedef int MIBSendResponse_t(

int, /* link identifier - input */
unsigned int, /* invoke identifier - output */
const void *, /* local identifier - input */
const char *, /* source - input */
const char *, /* destination association
const char *, handle - input */
const char *); /* message - input */

Parameters
link identifier

Specifies the link identifier returned by the MIBConnect function.

invoke identifier
This is the invoke identifier of the request which is being responded to with this
API call.

local identifier
Pointer to the local identifier of the object that is responding. Specify the same
identifier as the one specified in the request.

source
The distinguished name of the originator of the request. This can be used to
override the source of the message. This is used to resolve any appearance of
the MIB variable distinguished name. Specify NULL if you do not choose to
specify a value.

destination association handle
This is the association identifier of the association that is to be used to send the
response. It is required and must be the same as the association handle that
was received on the message that is being answered.

message
This is a pointer to a formatted string which contains the string header and the
response data.

Return Codes
0 The function was successful.

MB_ERR_ALLOC
An error occurred allocating storage. If MB_ERR_ALLOC is received by the
application program from an API function and there is a corresponding
REQS record in the VIT with a nonzero return code, the LPBUF pool is not
large enough and should be increased.

Synchronous and Asynchronous Functions

Chapter 4. CMIP Services API Function Syntax and Operands 85

MB_ERR_ASSOC_HANDLE_MISSING
The association handle parameter was not provided.

MB_ERR_CMIP_SERVICES_INACTIVE
CMIP services is inactive.

If using common storage area storage, the read queue exit routine stops
functioning.

If using data space storage, messages are not put on the data space.

MB_WARN_DATA_SPACE_FULL
If using a data space and the data space is out of storage, this warning is
returned to remind the application program that no messages will be
returned to this application program. This message will still be routed to
CMIP services.

MB_WARN_EXIT_FAILURE
If using common storage area storage and the application program has
indicated that it has had an unrecoverable error when returning to the read
queue exit routine, this warning is returned to remind the application
program that no messages will be returned to the application program. This
message will still be routed to CMIP services.

MB_ERR_INVALID_LINK_ID
The value specified on the link identifier parameter does not refer to a valid
connection.

MB_ERR_INVALID_INVOKE_ID
The invoke identifier parameter was not provided.

MB_ERR_LOCAL_ID_MISSING
A local identifier was not provided.

MB_ERR_MSG_MISSING
The message parameter was not provided.

MB_ERR_TRANSMIT
An apparent error occurred. Either there is a logic error in VTAM, or the
MIBDisconnect function has been issued, but it has not completed.

MB_ERR_VTAM_INACTIVE
VTAM is inactive.

Example of Function in an Application Program
The following example shows how the MIBSendResponse function can be coded in
an application program.
const char *AssocHandle;
int LinkId;
int rc;
void *LocalId;
unsigned int InvokeId;

rc = MIBSendResponse(LinkId,InvokeId,
LocalId,NULL,AssocHandle,,
"MIB.DeleteResponse(1,processingFailure)");

Synchronous and Asynchronous Functions

86 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Chapter 5. Read Queue Exit Routine

For the common storage area (CSA) interface, the read queue exit routine is
entered when VTAM CMIP services needs to notify or send data to the application
program.

For the data space interface, the read queue exit routine is entered when VTAM
CMIP services needs to notify the application program that:
v There are messages on the data space to be read
v CMIP services is terminating
v The data space is full.

The requirements for callers of the read queue exit routine are:
Location

User private
Key Same key that was used when the MIBConnect function was called
State Supervisor state
AMODE

31-bit
Residency mode

Any
ASC mode

Primary
Interrupt status

Enabled
Dispatchable unit mode

TCB
Locks No locks held
ENQs No ENQs held
@space

Same address space from which MIBConnect was issued

The data passed to the read queue exit routine is located in CSA storage and is
allocated in the same key that was used when the MIBConnect function was called.
The data is not fetch protected, so any key can be used to copy it. The read queue
exit routine should not attempt to free any storage passed to it. Storage is freed
automatically when the exit routine terminates. Application programs can vary
depending on product data and queuing structures. The following list gives
recommendations for the read queue exit routine:

v Use the contents of the user data field located in register 6 to set up the
environment. This field can be the address of an autodata area to improve
performance, or it can be NULL.

v Save the calling application program’s registers in the provided save area.

v Check the VTAM reason codes to determine why the exit routine was called and
what action should be taken. For a list of reason codes, refer to “VTAM Reason
Codes (for Data Space)” on page 89 and “VTAM Reason Codes (for CSA)” on
page 88.

Read Queue Exit Routine for the CSA Interface
This section describes how the read queue exit routine is called for the application
program when CSA storage is used for receiving data from CMIP services.

© Copyright IBM Corp. 1995, 2001 87

VTAM Reason Codes (for CSA)
Reason Code

Explanation

0 Data is being passed to the read queue exit routine

MB_ERR_CMIP_SERVICES_INACTIVE
CMIP services has terminated. Signal the application program main task to
issue the MIBDisconnect function. No data is passed for this reason code.

Note: Your read queue exit routine should be coded to ignore unrecognized reason
codes and set the return code to 0.

For a reason code of zero, copy any data presented from CSA storage to private
storage. Then queue the copied data to the appropriate task. CMIP services
examines the return code only if the read queue exit routine is driven with a reason
code of 0. Set register 15 as follows:

Return Code
Explanation

0 The read queue exit routine was successful.

8 The read queue exit routine had a temporary internal processing failure; for
example, it is out of storage

CMIP services builds an ROER if the message passed to the exit is a
confirmed request of type ROIVapdu. The read queue exit routine continues
to function.

16 The read queue exit routine had a permanent internal processing failure.

CMIP services builds an ROER if the message passed to the exit routine is
a confirmed request of type ROIVapdu. It also builds these ROERs for any
subsequent confirmed ROIV requests until the application program
disconnects from the API. The read queue exit routine does not continue to
receive data. It is driven again only if CMIP services terminates of if
application program calls the MIBDisconnect function and then calls the
MIBConnect function again.

Registers upon Entry (for CSA)
The following list shows the registers upon entering the read queue exit routine.

Register
Contents

1 Address of variable length parameter list. The end of the parameter list is
indicated by a “1” in the high-order bit of the last word. For details about the
parameter list, refer to “Parameter List (for CSA)” on page 89.

6 Contents of the user data field that was passed on the MIBConnect
function.

13 Address of an 18 fullword save area.

14 Return address.

15 Entry point address of the exit routine.

Registers upon Termination (for CSA)
The following list shows the registers upon terminating the read queue exit routine.

Read Queue Exit for CSA

88 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Register
Contents

0-14 Unchanged, restored to values on entry.

15 Return code:

0 Successful; input data processed.

8 Unsuccessful; storage failure.

16 Unsuccessful; terminate the exit routine.

Parameter List (for CSA)
The following list shows the parameter list for the read queue exit routine. The
decimal value is first, followed by the hexadecimal value in parentheses.

Offset Description

0 (0) VTAM reason code. For a list, refer to “VTAM Reason Codes (for CSA)” on
page 88.

4 (4) Address of API header

8 (8) Address of string header. Refer to “Description and Example of the String”
on page 48 for details.

12 (C) Length of API header + string header + CMIP string. Four-byte field that
represents the length of the total data to be copied.

Read Queue Exit Routine for Data Space Storage
This section describes how the read queue exit routine is called for the application
program when data space storage is used for receiving data from CMIP services.

VTAM Reason Codes (for Data Space)
Reason Code

Explanation

MB_DATA_ON_DATA_SPACE
CMIP services has placed one or more messages in the data space.

MB_WARN_DATA_SPACE_FULL
Data space storage is full. Signal the appropriate application task to issue
the MIBDisconnect function.

MB_ERR_CMIP_SERVICES_INACTIVE
CMIP services has terminated. Signal the appropriate application task to
issue the MIBDisconnect function.

Note: Your read queue exit routine should be coded to ignore unrecognized reason
codes and set the return code to 0.

Contents of register 15 are not examined when read queue exit routine returns. Any
messages in the data space are the responsibility of the application program. CMIP
services does not perform any special processing to build ROERs for these
messages. The read queue exit routine continues to be driven every time the
number of waiting messages in the data space goes from zero to one until the
application program disconnects from the API.

Read Queue Exit for CSA

Chapter 5. Read Queue Exit Routine 89

Registers upon Entry (for Data Space)
The following list shows the registers upon entering the read queue exit routine.

Register
Contents

1 Address of variable length parameter list. The end of the parameter list is
indicated by a “1” in the high-order bit of the last word. For details about the
parameter list, refer to “Parameter List (for Data Space)”.

6 Contents of user data field which was passed on the MIBConnect function.

13 Address of an 18 fullword save area

14 Return address

15 Entry point address of the exit

Registers upon Termination (for Data Space)
The following list shows the registers upon terminating the read queue exit routine.

Register
Contents

0-14 Unchanged, restored to values on entry

15 Zero

Parameter List (for Data Space)
The following list shows the parameter list for the read queue exit routine. The
decimal value is first, followed by the hexadecimal value in parentheses.

Offset Description

0 (0) VTAM reason code. For a list, refer to “VTAM Reason Codes (for Data
Space)” on page 89.

Read Queue Exit for Data Space

90 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Chapter 6. Dequeue and Release Routines for Data Space
Storage

The dequeue routine retrieves messages from the data space, one at a time.

The release routine frees the data space storage for each message that has been
processed.

The release and dequeue routines are non-reentrant per application program.

This chapter describes:
v Format of data on the data space
v Dequeuing a buffer with the dequeue routine
v Releasing a buffer with the release routine.

Format of Data on Data Space
The format for data on data space storage is shown in the following list. The
decimal value is first, followed by the hexadecimal value in parentheses.

Offset Description

0 (0) Address of API header (within data space). Refer to the declaration of
APIhdr in ACYAPHDH under “Appendix A. C Language Header File
(ACYAPHDH)” on page 231.

4 (4) Address of string header (within data space). Refer to “Description and
Example of the String” on page 48 for details.

8 (8) Length of API header + string header + CMIP string. Four-byte field that
represents the length of the total data to be copied.

The requirements for callers of the read queue exit routine are:
Location

User private
Key Key 6
State Supervisor state
AMODE

31-bit
Residency mode

Any
ASC mode

Access Register mode
Interrupt status

Enabled
Dispatchable unit mode

TCB
Locks No locks held
ENQs No ENQs held
@space

User address space

© Copyright IBM Corp. 1995, 2001 91

Dequeueing a Buffer with the Dequeue Routine
When the application program is notified by the read queue exit routine that data is
on the data space (MB_DATA_ON_DATA_SPACE), the application program must
call the dequeue routine to receive the data. The dequeue routine dequeues the
buffer until register 0 returns a 0 buffer count.

The dequeue routine address is returned on the MIBConnect function in the
interface control block. For information about the data space vector parameter, refer
to page 62.

Input to the Dequeue Routine
This routine is serially reusable per queue. If the application program attempts to
overlap execution of this routine, the results are unpredictable.

General Registers
Explanation

0 Value of the field RIV10NMI in the ISTRIV10_t structure filled in by
MIBConnect.

1 Unused

2-13 Undefined

14 Return address

15 Entry point address

Access Registers
Explanation

0 Undefined

1 ALET for interface data space

2-15 Zero

Output for Dequeue Routine
General registers

Explanation

0 Count of remaining buffers

1 Address of buffer that is in the data space or zero if no buffer exists

2-13 Restored to input values

14 Return address

15 Return code:

0 Buffer is dequeued. The address is in register 1.

8 No buffers available.

16 VTAM is terminating. The application program’s TPEND exit routine
is driven. Do not continue calling the interface routines. Cease all
reference to interface control blocks.

Access registers
Explanation

0 Undefined

Dequeue and Release Routines

92 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

1 ALET for interface data space

2-14 Restored to input value

15 Undefined

Releasing a Buffer with the Release Routine
To release a previously dequeued buffer, the application program must call the
release routine. The release routine address is returned on the MIBConnect
function in the interface control block. For information about the data space vector
parameter, refer to page 62.

This module is serially reusable per queue. If the application program attempts to
overlap execution of this module, the results are unpredictable.

Input to the Release Routine
General Registers

Explanation

0 Value of the field RIV10NMI in the ISTRIV10_t structure filled in by
MIBConnect.

1 Address of buffer to be released

2-13 Undefined

14 Return address

15 Entry point address

Access Registers
Explanation

0 Undefined

1 ALET for interface data space

2-15 Zero

Output to the Release Routine
General Registers

Explanation

0-1 Undefined

2-13 Restored to input values

14 Return address

15 Return code:

0 Buffer released.

16 VTAM is terminating. The application program’s TPEND exit routine
is driven. Do not continue calling the interface routines. Cease all
reference to interface control blocks.

Access registers
Explanation

0 Undefined

1 ALET for interface data space

Dequeue and Release Routines

Chapter 6. Dequeue and Release Routines for Data Space Storage 93

2-14 Restored to input value

15 Undefined

Abnormal Exits
If the buffer being released is either not allocated or is incorrect, the results are
unpredictable.

Dequeue and Release Routines

94 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Chapter 7. Rules for Constructing Standard CMIP Strings

This section describes how to look at the ASN.1 source files and read the syntax to
enable you to build a string that can be sent to CMIP services. Almost all of the
data types supported by ASN.1 are supported by VTAM CMIP services. VTAM
CMIP services does not support the following data types:

v GraphicString (except for the default character set, which is supported)

v TeletexString and VideotexString

v EXTERNAL data type

v Contained subtypes

v Inner subtyping

v Real value

v Constructed value

v Named bit strings.

Overview
CMIP services includes a management information base (MIB) application program
interface (API), which application programs use to send information to CMIP
services. Application programs send data to CMIP services by using API functions,
which are described under “Chapter 3. Overview of CMIP Services API Functions”
on page 41. The data sent in some of the parameters of the API functions can be
in any format that is accepted as standard ASN.1 syntax. ASN.1 syntax is the data
definition language used by OSI management.

This section describes how application programs can send data to CMIP services
(using the API functions) and how CMIP services sends data to application
programs.

The application program can send strings that are composed of values that are
specified according to the rules in the ASN.1 syntax. For a particular ASN.1 syntax,
an application program has some flexibility in the exact format of a string.

CMIP services returns information to application programs in a specific format. For
example, when the application program sends a string to CMIP Services that
includes a BOOLEAN value, the application program can use a variety of formats.
But when CMIP services sends a BOOLEAN value in a string to the application
program, CMIP services uses only one format for BOOLEAN values.

How Application Programs Format Data to Be Sent to CMIP Services
When calling the MIBSendRequest or MIBSendResponse functions, the application
program provides a zero-terminated string that includes the following:
v The word “msg”
v A blank
v The name of an ASN.1 module
v A period
v The name of a type within that ASN.1 module
v Values for all of the fields associated with that type.

For example, the following zero-terminated string could be passed as the fourth
parameter to the MIBSendRequest function.

© Copyright IBM Corp. 1995, 2001 95

"msg ACF.Release (a1)"

When calling the MIBSendCmipRequest or MIBSendCmipResponse functions, the
application program provides a zero-terminated string that includes only the values
for all of the fields associated with the type listed in the ANY DEFINED BY table for
the specified operation-value or error-value.

For example, to send a GET request by the MIBSendCmipRequest function, the
second parameter of the MIBSendCmipRequest function should be three
(operation-value for GET) and the third parameter of MIBSendCmipRequest
function could be the following zero-terminated string:
"(baseManagedObjectClass 2.9.3.2.3.13,"
" baseManagedObjectInstance "
" (distinguishedName "
" '1.3.18.0.2.4.6=NETA;2.9.3.2.7.4=(name GEORGE)'),"
" attributeIdList (2.9.3.2.7.35,2.9.3.2.7.5))"

Each value is made up of a <label> <value> pair. The <label> is the identifier that
appears in ASN.1 NamedTypes. See clause 12.5 of ISO-8825 for the formal
definition of a NamedType.

In the following example, a, b, and c are possible labels. For the field with data type
D, the type name is used as a label. Using the type name as a label is necessary
only when the ASN.1 syntax was defined without labels for all SET and
SEQUENCE fields. If the type name is used for a data type that has a label, the
type name is rejected.

A ::= SEQUENCE
{

a INTEGER,
b OBJECT IDENTIFIER,
c C,

D
}

Labels can always be specified, but they are required only to resolve ambiguity in
the ASN.1 definition. Because it is difficult to know when ambiguity exists, use the
following rules when building strings to send to CMIP services:

v Labels are required on members of a SET construct, because the members of
the SET can be specified in any order.

v A label is required to resolve a CHOICE; otherwise CMIP services cannot
determine which choice was selected by the application program.

v It is recommended that members of a SEQUENCE be identified with a label.
Labels are required only in situations where an optional member is intentionally
omitted and subsequent members follow. However, unless every member of a
sequence is specified, or the optional members that are intentionally omitted are
located at the end of the SEQUENCE, it is simpler to identify all members with a
label.

v Elements of a SET and SEQUENCE and the element of a CHOICE are
surrounded by parentheses.

The <value> portion of the <label> <value> pair can be specified in the following
ways:

v Primitive data types, such as BOOLEAN and INTEGER, that are not composed
of one or more instances of other data types

v Constructed data types, such as SEQUENCE and SET

Standard CMIP Strings

96 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

v Hexadecimal basic encoding rules (BER), which can be used for all ASN.1 types
except CHOICE and ANY DEFINED BY.

Any of the five following formats are recognized by CMIP services, but CMIP
services always returns explicit value notation if there are no insurmountable errors
encountered during the decoding of incoming strings. If errors are encountered, the
hexadecimal BER format explained in “Hexadecimal BER Format” on page 100 is
used.

Explicit Value Format
In the explicit value format, the actual value of the primitive data type is given. For
example, an application program can specify “1234” as the value of an INTEGER
data type. Each of the primitive data types has a unique explicit value notation and
these are explained in “Primitive ASN.1 Data Types” on page 101. Examples are
“TRUE” and “FALSE” for BOOLEAN types, “-3.125” for REAL types, and “1001001”
for BIT STRINGS.

Values can be formatted and sent to the API enclosed in single or double quotation
marks. Quotation marks are required if the value contains a space. Use the same
kind of quotation mark to begin and end the value. The quotation marks are ignored
by CMIP services.

ASN.1 Value Format
The value format is based on an ASN.1 module, as shown in the following example.

A ::= INTEGER

a INTEGER ::= 1
b INTEGER ::= 2
c INTEGER ::= 3
d A ::= 4

B ::= SET {
f [1] INTEGER,
g [2] INTEGER,
h [3] INTEGER
}

C ::= SEQUENCE {
f [1] INTEGER,
g [2] INTEGER,
h [3] INTEGER
}

Values for A may be specified as:
a
b
d
12

Values for B may be specified as:
(f a, h d, g 34)
(h 138, f d, g 34)

Values for C may be specified as:
(c, 12, 19)
(f c, 12, h 19)
(f c, g 12, h 19)

The application program can specify a, b, c, or d as the <value> portion of a
<label> <value> pair. If the value appears in a context that might be ambiguous,
such as for the value of the g field in the SET B, the appropriate <label> must
accompany the <value>. The labels can be omitted when specifying values for C,

Standard CMIP Strings

Chapter 7. Rules for Constructing Standard CMIP Strings 97

because there is no ambiguity. The labels can never be omitted when specifying
values for B, because A is optional and without a label for B, it is not possible to
determine whether the value is for A or B.

CMIP services, using information from the compiled ASN.1 modules, verifies that
the value and type are compatible.

MIB Variable Format
MIB variables are values that can be set in CMIP services by an object, and then
referred to later in a string. These values can be specified as MIB variables by the
application program in any string. CMIP services substitutes the actual values.

MIB variables are denoted with an ampersand (&) as the first character of the
variable name. The API checks to make sure that the type of the MIB variable and
the type of the type reference are compatible.

CMIP services includes a set of predefined MIB variables that can be used in any
string, by any object:

&DN Represents the distinguished name of the originator of a string that is
passed to the API. The API uses its knowledge of the source of the string to
provide the appropriate distinguished name. The name can be used by an
object that is registered with CMIP services to identify itself when it sends a
string. The API supplies the distinguished name that corresponds to the
local identifier provided on the request.

&IID Represents the invoke identifier of the current string. This can be used in a
response or when initiating a request. On requests, this MIB variable allows
the sender of a string to build the string without knowing the invoke
identifier. For all requests, the invoke identifier is not required because the
MIB functions assign the invoke identifier after they receive the string.
Therefore the API can fill in the value for the invoke identifier once it has
been assigned.

>M Represents the current time in Generalized time format. For more
information, refer to “Time Types” on page 112.
yyyy/mm/dd-hh:mm:ss.0

&UTM Represents the current time in Universal time format. For more information,
refer to “Time Types” on page 112.
yyyy/mm/dd-hh:mm:ss.0

&OC Represents the managed object class of the originator of the string. This
variable allows the application program to use generic strings in responding
to requests, without having to customize them for each object class it
supports. In any response from an unregistered object or when
allomorphism is being exercised, this variable cannot be used.

The following example shows how to use these MIB variables:
Arg =

"(managedObjectClass &OC, "
" managedObjectInstance (distinguishedName &DN), "
" currentTime >M, "
" attributeList ((attributeId 2.9.3.2.7.5, "
" (distinguishedName "
" (((attributeType 1.3.18.0.2.4.6, "
" attributeValue MYNETID), "
" (attributeType 2.9.3.2.7.4, "
" attributeValue (name \"MYCPNAME\")))))),"

Standard CMIP Strings

98 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

" (attributeId 2.9.3.2.7.35, enabled) "
") "
") ";

rc = MIBSendCmipResponse(LinkId,
OldInvokeId,
1, /* last in chain */
1, /* success */
3, /* GET response */
Arg,
LocalId_ptr,
NULL,
OldAssocHandle,
NULL);

CMIP Services substitutes the appropriate values for the variables &OC, &DN, and
>M.

Note: The many extra spaces in the response string will be ignored by CMIP
services, though they will lead to extra processing overhead.

Constructed Value Format
The constructed types, SET, SEQUENCE, SET OF, and SEQUENCE OF and the
CHOICE types use constructed value format. In this format, the value of a <label>
<value> pair is surrounded by parentheses and contains other <label> <value> pair
specifications separated by commas, as is shown in the following ASN.1 definition:

A ::= SEQUENCE
{

a INTEGER,
b BIT STRING,
c BOOLEAN

}

The invoking application program specifies the following across the API:
(a 12, b 11011011, c TRUE)

To nest constructed data types, use multiple sets of parentheses. Note that the
number of parentheses does not correspond directly to the number of braces in the
ASN.1. It corresponds to the number of constructed data types that occur. For
example, an application program could specify

(a 12, b (1, 2, 3, 4), c TRUE, d (111, 1101110, 11000))

to be sent to the API to correspond to the following ASN.1 definition:
A ::= SEQUENCE

{
a [0] INTEGER DEFAULT 0,
b [1] SEQUENCE OF INTEGER,
c [2] BOOLEAN OPTIONAL,
d [3] B

}
B ::= SEQUENCE OF C
C ::= BIT STRING

The numbers specified in square brackets in the ASN.1 of the previous example
refer to the tagging that is used when exchanging strings between systems.
Because the identifier of the named type (in this case, a, b, c, or d) corresponds
not only to the type reference but also to the tagging, it is not necessary to specify
the tagging across the API. Tags are determined automatically by CMIP services.

Standard CMIP Strings

Chapter 7. Rules for Constructing Standard CMIP Strings 99

The words DEFAULT and OPTIONAL in an ASN.1 definition indicate that those
fields can be omitted in an instance of type reference A. DEFAULT means the field
a can be omitted. If it is omitted, CMIP services interprets the field as having a
value the default value specified in the syntax. In the previous example, zero is
assigned to the field with label A. If it is not omitted, CMIP services does not assign
DEFAULT fields default values. Application programs that receive strings containing
DEFAULT fields must be able to understand and interpret the omission of the field.

OPTIONAL means that the field c does not have to be specified. When it is not
specified, CMIP services does not interpret the field.

Hexadecimal BER Format
Hexadecimal BER format is the hexadecimal value contained in the BER, enclosed
in angle brackets. Hexadecimal BER format is the final format that can be used to
specify a value. In some cases when CMIP services cannot decode a string sent by
another CMIP services, CMIP services sends the string to the application program
in hexadecimal BER format.

In this format, the value is enclosed in less than (<) and greater than (>) symbols,
and consists of zero or more hexadecimal digits. In all but one case, the
hexadecimal digits represent the BER encoding of the <value> portion of a
particular field. For example, the value of a BOOLEAN in BER is specified as a
single octet, with nonzero values representing true. An octet is a byte. To specify a
true value for field fred to the API in hexadecimal BER format, the application
program specifies:
... fred <01> ...

When specifying a value for an ANY type, the application program is required to
specify the entire BER field, including the tag, length, and value portions. It cannot
specify only the value, because the ANY type cannot understand what the possible
types are. For example, if the same application program specifies a BOOLEAN
value of true to the API for a field called fred that is an ANY type, the following
should be specified:
... fred <010101> ...

In this example, the first octet represents the tag, which is a universal tag for
BOOLEAN. For a full description of how BER tags are encoded see the BER
standard.

The second octet represents the length of the value portion, a length of 1 octet, and
the value is as specified previously.

An application program should not use hexadecimal BER when sending information
to the API, because error and subtype checking that is normally performed by the
API code is not applied to the BER value. The value is assumed to be correctly
formed and is inserted into the BER buffer at the appropriate location.

Another potential problem is the use of the hexadecimal BER format for ANY types,
because improper tags and lengths can be introduced. Hexadecimal BER format is
necessary when an INTEGER that is longer than four octets needs to be shipped.
Hexadecimal BER allows the application program to circumvent any limitations
imposed by the API, but you might encounter problems.

When CMIP services receives strings from an application program, CMIP services
attempts to decode the strings into a combination of explicit values and constructed

Standard CMIP Strings

100 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

values. During decoding, if CMIP services encounters an error in a primitive data
type, CMIP services sends to the application program the value for that type in
hexadecimal BER format. For example, if the contents of an INTEGER field are too
large to fit within four octets, CMIP services sends the application program the
INTEGER value in hexadecimal BER format.

If CMIP services encounters an error in a constructed data type or a decision data
type, such as ANY DEFINED BY or CHOICE, CMIP services sends the application
program the entire contents of the constructed or decision type in a single
hexadecimal BER value. For example, if CMIP services does not recognize the
value of an OBJECT IDENTIFIER, the OBJECT IDENTIFIER value is sent to the
application program in hexadecimal BER format.

Primitive ASN.1 Data Types
Primitive types within ASN.1 are those types that are not constructed or cannot be
broken down into more primitive types. They correspond to the normal data types
encountered in many programming and data definition languages.

The term primitive type should not be confused with primitive encoding as defined
in the BER standard. Some primitive types, such as BIT STRINGs, can actually be
encoded in a constructed manner. However, in this case, all of the components
must be of the same type as the constructed BIT STRING.

The following sections describe:
v How an application program sends the type to CMIP services
v How CMIP services sends the type to an application program

BOOLEAN Type
BOOLEAN types can have one of two values: true or false.

How an Application Program Sends a BOOLEAN Value to CMIP
Services
An application program can send a BOOLEAN value to CMIP services in any of the
following forms:

ZZ
label

TRUE
true
FALSE
false

(1)
value

(1)
variable

(2)
<hex value >

Z[

Notes:

1 Values and variables specified in this position must resolve to a BOOLEAN
value.

2 When specifying a value in this format, be aware that the BER representation
consists of a single octet, with X'00' representing false, and any other value
representing true.

Standard CMIP Strings

Chapter 7. Rules for Constructing Standard CMIP Strings 101

An application program can specify a BOOLEAN value as shown in the following
examples:
TRUE
FALSE
true
false

How CMIP Services Sends a BOOLEAN Value to an Application
Program
CMIP services sends one of the following BOOLEAN values:
v TRUE
v FALSE

CMIP services places labels in the string for all elements of the syntax that are
present.

If CMIP services cannot decode the value, CMIP services sends the value to the
application program in hexadecimal BER format, enclosed in delimiters. See
“Hexadecimal BER Format” on page 100 for a description.

INTEGER Type
INTEGER types represent integer numbers. An INTEGER value can be either
positive or negative. INTEGER values are expressed as the explicit value of the
integer, which is the actual value of the integer. For example, an application
program can specify “1234” as an INTEGER value. The minimum value is
-2147483648; the maximum value is 2147483648.

How an Application Program Sends an INTEGER Value to CMIP
Services
An application program can send an INTEGER value to CMIP services in any of the
following forms:

ZZ
label

digits
+
−

(1)
named number

(2)
value

(2)
variable
<hex value>

Z[

Notes:

1 The ASN.1 compiler recently introduced support for named numbers, and this
support is expected to be added to the API in the very near future. When it is,
the API will output named integer values by giving the value identifier.

2 Values and variables specified in this position must resolve to an INTEGER
value.

The following example shows how the ASN.1 syntax might define an INTEGER
value.
X ::= INTEGER
SlowModemSpeed ::= INTEGER {

slowest (300),

Primitive Data Types

102 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

slower (1200),
slow (2400)
}

A value for X would be:
123

Values for SlowModemSpeed would be:
300
2400

How CMIP Services Sends an INTEGER Value to an Application
Program
CMIP services sends INTEGER values as strings of decimal digits, possibly
preceded by a minus sign (−). INTEGER values are always represented by their
numeric values.

CMIP services places labels in the string for all elements of the syntax that are
present.

If CMIP services cannot decode the value, CMIP services sends the value to the
application program in hexadecimal BER format, enclosed in delimiters. See
“Hexadecimal BER Format” on page 100 for a description. For example, if CMIP
services encounters an INTEGER value longer than four octets, CMIP services
sends the value to the application program in hexadecimal BER format.

ENUMERATED Type
The values for ENUMERATED types are expressed as explicit values that are
symbolic, rather than numeric.

How an Application Program Sends an ENUMERATED Value to
CMIP Services
An ENUMERATED can be formatted and sent to CMIP services in the following
forms:

ZZ
label

enumeration
(1)

value
(1)

variable
<hex value>

Z[

Notes:

1 Values and variables specified in this position must resolve to an
ENUMERATED value.

The following example shows how the ASN.1 syntax might define an
ENUMERATED value.
X ::= ENUMERATED {

val1 (0),
val2 (1),
val3 (2)
}

Values for X would be:
val1
val3

Primitive Data Types

Chapter 7. Rules for Constructing Standard CMIP Strings 103

How CMIP Services Sends an ENUMERATED Value to an
Application Program
CMIP services sends an ENUMERATED value as a symbolic ASCII string that
corresponds to the value found in the BER.

ENUMERATED values are always represented by the name of the value, not the
corresponding integer value.

CMIP services places labels in the string for all elements of the syntax that are
present.

If CMIP services cannot decode the value, CMIP services sends the value to the
application program in hexadecimal BER format, enclosed in delimiters. See
“Hexadecimal BER Format” on page 100 for a description.

REAL Type
REAL types represent real values.

How an Application Program Sends a REAL Value to CMIP
Services
An application program can send a REAL value to CMIP services in any of the
following forms:

ZZ
label

mantissa
+ E exponent
− +

−

Z[

The application program is required to use the hexadecimal BER format for
specifying REAL values.

The following example shows how the ASN.1 syntax might define a REAL value.
X ::= REAL

Values for X would be:
"3.14"
"0.0"
"-14.33e-05"

How CMIP Services Sends a REAL Value to an Application
Program
CMIP services sends REAL values to an application program in the following
format:

ZZ label mantissa
+ E exponent
− +

−

Z[

CMIP services places labels in the string for all elements of the syntax that are
present.

Primitive Data Types

104 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Under the OS/2* operating system, CMIP services sends REAL values according to
the criteria used for the output of %lg in printf(). CMIP services sends the smallest
number of characters that can be used to represent the number.

If CMIP services cannot decode the value or if CMIP services exists on an
operating system other than OS/2, CMIP services sends the value to the application
program in hexadecimal BER format, enclosed in delimiters. See “Hexadecimal
BER Format” on page 100 for a description.

BIT STRING Type
The BIT STRING type represents a string of bits. There is no limit to the length of
the string.

How an Application Program Sends a BIT STRING to CMIP
Services
An application program can send a BIT STRING to CMIP services in any of the
following forms:

ZZ
label

]

″″
.

1
0

(1)
value

(1)
variable

(2)
<hex value >

Z[

Notes:

1 Variables specified in this position must resolve to a BIT STRING.

2 When specifying a value in this format, remember that the BER representation
of a BIT STRING always begins with an octet that signifies the number of
unused bits in the final octet of the value. Omitting this extra octet results in
decoding errors by the receiver.

The bit strings are sent to CMIP services as part of a character string, using the
characters B'1' and B'0' to represent on and off. The application program can also
specify a null BIT STRING by entering two quotation marks, either single ('') or
double (""). A null BIT STRING has a length of zero.

How an Application Program Specifies a BIT STRING Value
The following example shows how the ASN.1 syntax might define a BIT STRING.
X ::= BIT STRING {

val1 (0),
val2 (1),
val3 (2)
}

Values for X would be:
001 — means val3 is turned on, the others are off
100 — means val1 is turned on, the others are off
111 — val1, val2, val3 are all on

Primitive Data Types

Chapter 7. Rules for Constructing Standard CMIP Strings 105

How CMIP Services Sends a BIT STRING to an Application
Program
CMIP services sends BIT STRINGs as strings of digits, without enclosing them in
quotation marks. When CMIP services receives a null BIT STRING from an
application program, CMIP services sends the null BIT STRING as two double
quotation marks.

CMIP services places labels in the string for all elements of the syntax that are
present.

If CMIP services cannot decode the value for a BIT STRING, including null BIT
STRINGS, CMIP services sends the value to the application program in
hexadecimal BER format, enclosed in delimiters. See “Hexadecimal BER Format”
on page 100 for a description.

OCTET STRING Type
The OCTET STRING type represents a string of hexadecimal digits.

How an Application Program Sends an OCTET STRING to CMIP
Services
An application program can send an OCTET STRING to CMIP services in any of
the following forms:

ZZ
label

″″
(1)

string of hexadecimal digits
(2)

value
(2)

variable name
<hex value>

Z[

Notes:

1 The formatted string to be sent to CMIP services must have an even number
of hexadecimal digits.

2 Variables specified in this position must resolve to OCTET STRINGs.

An application program can send OCTET STRINGs to CMIP services as strings of
an even number of hexadecimal digits, using the character representation of the
hexadecimal digits '0' through '9' and 'A' through 'F'. Both uppercase and lowercase
letters can be used. When CMIP services returns the OCTET STRING, CMIP
services uses uppercase letters.

Application programs can have OCTET STRINGs that have a length of zero. Such
OCTET STRINGS are null OCTET STRINGs. For null OCTET STRINGs, the
application program should format the string with two quotation marks with no
intervening characters. The application program can specify either single or double
quotation marks.

An application program can also specify OCTET STRINGs as hexadecimal BER,
although this format is essentially the same as the explicit value format, with
different delimiters.

Primitive Data Types

106 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

How an Application Program Specifies an OCTET STRING
The following example shows how the ASN.1 syntax might define an OCTET
STRING.
X ::= OCTET STRING (SIZE(2))

If X has a hexadecimal value of 01AB, the string passed to or from the
API is:

F0F1C1C2

How CMIP Services Sends an OCTET STRING to an Application
Program
CMIP services sends an OCTET STRING in explicit value format. CMIP services
sends a null OCTET STRING as two double quotation marks when it sends the
string.

CMIP services places labels in the string for all elements of the syntax that are
present.

NULL Type
A NULL type is used for optional input parameters for which the application program
does not specify a value.

How an Application Program Sends a NULL Value to CMIP
Services
An application program can send a NULL value to CMIP services in any of the
following forms:

ZZ
label

null
NULL

(1)
value

(1)
variable

(2)
<hex value >

Z[

Notes:

1 Variables specified in this position must resolve to NULL.

2 When specifying a value in this format, remember that the BER representation
of a NULL consists only of a tag and length field that indicates tha the length
is zero. Therefore, the proper representation of hexadecimal BER should be
“<>”.

An application program can specify a NULL value by specifying:
v The character string “NULL”
v An ASN.1 value label that resolves to a NULL value
v A MIB variable that resolves to a NULL value.

How an Application Program Specifies a NULL Value
The following example shows how the ASN.1 syntax might define a BIT STRING
value.
X ::= NULL

The value for X is:
NULL

Primitive Data Types

Chapter 7. Rules for Constructing Standard CMIP Strings 107

How CMIP Services Sends a NULL Value to an Application
Program
CMIP services sends a NULL value as the uppercase string NULL.

CMIP services places labels in the string for all elements of the syntax that are
present.

If CMIP services cannot decode the value, CMIP services sends the value to the
application program in hexadecimal BER format, enclosed in delimiters. See
“Hexadecimal BER Format” on page 100 for a description.

OBJECT IDENTIFIER Type
OBJECT IDENTIFIERs (OIs) serve within OSI management as universally unique
codepoints to represent object classes, specific values, or identities of registered
parts of an object class.

How an Application Program Sends an OBJECT IDENTIFIER to
CMIP Services
An application program can send an OBJECT IDENTIFIER to CMIP services in any
of the following forms:

ZZ
label

object identifier
(1)

value
(1)

variable
<hex value>

Z[

object identifier:

]

.

0 . component
1
2

Notes:

1 Variables specified in this position must resolve to an OBJECT IDENTIFIER.

An application program sends an OBJECT IDENTIFIER to CMIP Services by using
an explicit value. OBJECT IDENTIFIERs are specified as text strings of integers
separated by periods as in “1.3.18.0.0.6”. Each of the numbers of the OBJECT
IDENTIFIER must resolve to a long integer. An OBJECT IDENTIFIER must contain
at least two numbers in an OBJECT IDENTIFIER, but there is no maximum number
of components. The first number must be either 0, 1, or 2.

How an Application Program Specifies an OBJECT IDENTIFIER
Value
The following example shows how the ASN.1 syntax might define an OBJECT
IDENTIFIER.

Primitive Data Types

108 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

X ::= OBJECT IDENTIFIER

Values for X would be:
1.2.3.4.5.6
1.3.18.0.0.255
2.9.3.2.6.18

How CMIP Services Sends an OBJECT IDENTIFIER to an
Application Program
CMIP services sends an OBJECT IDENTIFIER as an explicit value.

CMIP services places labels in the string for all elements of the syntax that are
present.

If CMIP services cannot decode the value, CMIP services sends the value to the
application program in hexadecimal BER format, enclosed in delimiters. See
“Hexadecimal BER Format” on page 100 for a description.

Character String Types
Different types of character strings can be formatted and sent to the API. Four of
the string types defined in the ASN.1 standard are supported:
v NumericString
v PrintableString
v VisibleString (also known as ISO646String)
v GraphicString.

The GraphicString type is the same as the ISO646String type. The application
program can specify character sets other than those supported by VTAM CMIP
services by using the hexadecimal BER format (see “Hexadecimal BER Format” on
page 100).

How an Application Program Sends a Character String to CMIP
Services
An application program can send a character string value to CMIP services in as
normal text strings, according to the following format:

ZZ
label

(2)
character string

(1) (1)

″ ″
’ ’

(3)
value

(3)
variable
<hex value>

Z[

Notes:

1 Quotation marks are especially important when specifying values of character
strings, because character strings are one of the few places where special
characters are valid. Quotation marks are needed if any special characters
such as spaces, parentheses, or commas are included in the value.

Primitive Data Types

Chapter 7. Rules for Constructing Standard CMIP Strings 109

2 The characters that can be specified in this string are dictated by the ASN.1
type of the string. See the text for an explicit listing of the allowable
characters.

3 Variables specified in this position must resolve to a hexadecimal or character
string.

An application program can send a character string to CMIP services with or
without quotation marks depending on whether the string contains special
characters.

Valid Characters for Character Strings
The characters that can be specified in the string types are defined in ISO-8824,
the ASN.1 standard.

Valid Characters for NumericString Type
Table 4. Valid Characters for NumericString

Character Name Glyph

Digits 0-9

Space

Valid Characters for PrintableString Type
Table 5. Valid Characters for PrintableString

Character Name Glyph

Uppercase letters A-Z

Lowercase letters a-z

Digits 0-9

Space

Apostrophe ’

Left parenthesis (

Right parenthesis)

Plus sign +

Comma ,

Hyphen -

Full stop .

Solidus /

Colon :

Equal sign =

Question mark ?

Valid Characters for GraphicString and ISO646String
Table 6. Valid Characters for GraphicString and ISO646String

Character Name Glyph

Uppercase letters A-Z

Lowercase letters a-z

Digits 0-9

Primitive Data Types

110 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Table 6. Valid Characters for GraphicString and ISO646String (continued)

Character Name Glyph

Space

Exclamation mark !

Quotation mark '

Number sign #

Dollar sign $

Percent sign %

Ampersand &

Apostrophe ’

Left parenthesis (

Right parenthesis)

Asterisk *

Plus sign +

Comma ,

Hyphen -

Full stop .

Solidus /

Colon :

Semicolon ;

Less than sign <

Equals sign =

Greater than sign >

Question mark ?

Commercial at @

Left square bracket [

Reverse solidus \

Right square bracket]

Upward arrow head ^

Underline _

Grave accent v

Left curly bracket {

Vertical line |

Right curly bracket }

Overline ‾

Composite graphics, which are those constructed with backspaces in a
GraphicString, are not allowed.

If a character that is not valid is entered on encoding, the string is rejected and an
error code is returned to the application program. On decoding, characters that are
not valid are accepted and translated to periods.

Primitive Data Types

Chapter 7. Rules for Constructing Standard CMIP Strings 111

How CMIP Services Sends a Character String to an Application
Program
When CMIP services sends character strings, if the value contains the double
quotation mark (″) character, CMIP services encloses the value in single quotation
marks. If the string does not contain the double quotation mark character, CMIP
services encloses the value in double quotation marks.

CMIP services places labels in the string for all elements of the syntax that are
present.

If CMIP services cannot decode the value, CMIP services sends the value to the
application program in hexadecimal BER format, enclosed in delimiters. See
“Hexadecimal BER Format” on page 100 for a description.

Time Types
Two time specifications are supported by the API: GeneralizedTime and
UniversalTime.

How an Application Program Sends a TIME Value to CMIP
Services
An application program can send a TIME value to CMIP services for either type of
time is in the following forms:

ZZ
label

YYYY/MM/DD-HH:MM:SS
.T Z

+HH:MM
-HH:MM

<hex value>

Z[

where the initial fields correspond to the year (4 digits), month, day, hours (specified
using the 24-hour clock), minutes, and seconds. The additional fields are optional
and can be included if the sender chooses. These represent the tenths of a second
(.T), the type of the time (Z indicates GMT, + or - indicates a GMT offset and
nothing indicates local time).

The entire non-hexadecimal value can be enclosed in quotation marks, as can any
other string value, if the sender wishes.

How CMIP Services Sends a TIME Value to an Application
Program
CMIP services sends a TIME value in the same format that the application program
uses to send a TIME value to CMIP services. See “Hexadecimal BER Format” on
page 100 for a description.

Constructed ASN.1 Types
Constructed types are those that combine similar or different primitive types into
ordered or unordered groups. VTAM CMIP services represents the members of
constructed types by enclosing the members in parentheses. There are four
constructed types. Whether a type can contain members of different types and
whether order is important depends on the constructed type.

Primitive Data Types

112 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Table 7. Order and Members of Constructed Types

Constructed
Type

Members Order

SETs Members can be different types. Order of members is not important.

SEQUENCEs Members can be different types. Order of members is important.

SET OFs All members must be the same
type.

Order of members is not important.

SEQUENCE OFs All members must be the same
type.

Order of members is important.

The hexadecimal BER format can also be used for constructed types. When the
hexadecimal BER format is used, either the members of the constructed type can
be specified as BER or the entire contents of the SET or SEQUENCE can be
specified in a single value. For example, given the following ASN.1:
A ::= SEQUENCE
{

a INTEGER,
b INTEGER,
c INTEGER

}

any of the following values may be specified:
(a 1, b 2, c 3)
(a <01>, b <02>, c <03>)
<020101020102020103>

The former value specification is preferred, because CMIP services can check that
the values that are specified are valid and CMIP services can construct the correct
encoding of the tags, lengths, and values.

How CMIP Services Sends a Constructed Type to an Application
Program

CMIP services sends constructed values according to the format used for the
primitives that make up the constructed types. For example, if the SET value is
comprised of INTEGER values, CMIP services sends the values in the same format
that CMIP services sends INTEGER values. Values are enclosed in parentheses
and can have commas between them.

CMIP services places labels in the string for all elements of the syntax that are
present.

If CMIP services cannot decode the value, CMIP services sends the value to the
application program in hexadecimal BER format, enclosed in delimiters. See
“Hexadecimal BER Format” on page 100 for a description.

For example, if an unrecognized member occurs in a SEQUENCE or a duplicate
member occurs in a SET, the entire contents of the constructed type is returned as
a single hexadecimal string.

SEQUENCEs
SEQUENCES are common in ASN.1. The number and order of members of the
SEQUENCE are dictated by the ASN.1 definition of the SEQUENCE.

Constructed ASN.1 Types

Chapter 7. Rules for Constructing Standard CMIP Strings 113

An application program can send a SEQUENCE to CMIP services in any of the
following forms:

ZZ
label

]

,

()
value

(1)
label

(2)
<hex value >

Z[

Notes:

1 Labels are required only if an optional element of the sequence is omitted and
a subsequent member is included.

2 When specifying a value in this format, the application program is required to
specify the entire contents of the SEQUENCE, including the tags and lengths
of the members, but not the tag and length of the SEQUENCE itself.

Whether a particular member is required to be included depends on whether the
ASN.1 definition indicates that it is optional. It does not depend on CMIP services.

SETs
SETs are unordered collections of members in ASN.1, and CMIP services
implements this definition by allowing the input of members of the set in any order.
Because members can be in any order, CMIP services requires that labels be
specified on all SET members.

An application program can send a SET to CMIP services in the following form,
which is similar to that for SEQUENCEs:

ZZ
label

]

,

()
label value

(1)
<hex value >

Z[

Notes:

1 When specifying a value in this format, the application program is required to
specify the entire contents of the SET, including the tags and lengths of the
members, but not the tag and length of the SET itself.

As with SEQUENCEs, whether a particular member is required to be included is
determined by whether the ASN.1 definition indicates that it is optional. It does not
depend on CMIP services. Note that labels are required on members of a SET.

SET OF and SEQUENCE OF Types
The SET OF and SEQUENCE OF types represent one or more instances of a SET
or a SEQUENCE. For a description of the differences among constructed types,
refer to Table 7 on page 113.

Constructed ASN.1 Types

114 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

An application program can send a SET OF or SEQUENCE OF value to CMIP
services in the following form:

ZZ
label

]

,

()
value

label
(1)

<hex value >

Z[

Notes:

1 When specifying a value in this format, the application program is required to
specify the entire contents of the SET OF or SEQUENCE OF, including the
tags and lengths of the members, but not the tag and length of the SET OF or
SEQUENCE OF itself.

There is no limitation (other than subtyping specified in the ASN.1) as to the
number of members that can be specified in the SET OF or SEQUENCE OF. It is
valid to specify a SET OF or SEQUENCE OF with no members, so long as subtype
constraints are obeyed.

Decision Types
Three ASN.1 types allow the application program to include different pieces of
information, even after the ASN.1 definition is complete. They allow the application
program to determine, at execution time, what information should fall within certain
fields. VTAM CMIP services calls these types decision types, and they include
CHOICE, ANY and ANY DEFINED BY.

Note that the hexadecimal BER format is not supported for CHOICE and ANY
DEFINED BY types. If the application program needs to specify the latter as BER,
the entire SEQUENCE that contains the ANY DEFINED BY must be specified as a
single BER value.

CHOICE Types
A CHOICE type is one in which a decision must be made concerning the next type
to include in a string. When receiving incoming strings to be decoded, the
determination of which CHOICE to take is based on the tagging in the transfer
syntax. In CMIP services, the choice is based on the resolution label presented in
the string when the CHOICE is encountered. The resolution label is the identifier of
each of the NamedTypes in the CHOICE construct.

How an Application Program Sends a CHOICE to CMIP Services
An application program can send a CHOICE to CMIP services in any of the
following forms:

ZZ (resolution label value)
label

Z[

Note: The resolution label is always required.

Constructed ASN.1 Types

Chapter 7. Rules for Constructing Standard CMIP Strings 115

How an Application Program Specifies CHOICE Values
The following example shows how the ASN.1 syntax might define a CHOICE.

A ::= CHOICE
{

x INTEGER,
y OBJECT IDENTIFIER,
z OCTET STRING

}

The application program can choose to have field b be an INTEGER, an OBJECT
IDENTIFIER, or an OCTET STRING. If the application program chooses for it to be
an INTEGER, the following string should be specified:

b (x 1234)

where the x is the resolution label.

How CMIP Services Sends a CHOICE to an Application Program
So long as the alternative described in the BER exists within the CHOICE, CMIP
services sends the CHOICE in the same format an application program uses to
send a CHOICE to CMIP services. (An alternative is one of the options specified in
the CHOICE syntax.)

CMIP services places labels in the string for all elements of the syntax that are
present.

If CMIP services cannot decode the value, CMIP services sends the value to the
application program in hexadecimal BER format, enclosed in delimiters. See
“Hexadecimal BER Format” on page 100 for a description. For example, if CMIP
services does not recognize the alternative, CMIP services sends a CHOICE as
hexadecimal BER.

ANY DEFINED BY Types

How an Application Program Sends an ANY DEFINED BY Value
to CMIP Services
An application program can send an ANY DEFINED BY value to CMIP services
according to the method used to send the type to which the ANY DEFINED BY
resolves. The label of the input corresponds to the label of the ANY DEFINED BY
construct in the ASN.1, and the value corresponds to the value of the type to which
the ANY DEFINED BY resolves. The resolution field determines which type to
translate.

How an Application Program Specifies ANY DEFINED BY Values
The following example shows how the ASN.1 syntax might define an ANY
DEFINED BY value.

A ::= INTEGER
B ::= BIT STRING
C ::= BOOLEAN

X ::= SEQUENCE
{

a INTEGER,
b ANY DEFINED BY a --% ANY_TABLE_REF (Y)

}
--% Y ANY_TABLE ::=
--% {

Decision Types

116 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

--% 1 A,
--% 2 B,
--% 3 C
--% }

Given this ASN.1, if one wanted to have member b of type X be a bit string, field a
must have a value of 2 (as defined by the ANY DEFINED BY resolution table Y).
Therefore, an application program formats and sends to CMIP services the
following:

ANY Types
The ANY type in ASN.1 carries no tagging information and can resolve to any other
ASN.1 type. Because an unknown set of different types can be used to resolve an
ANY, the API must be told about the tag to be used.

How an Application Program Sends an ANY Value to CMIP
Services
An application program can send an ANY value to CMIP services in the following
form:

ZZ
label

(1)
<hex value > Z[

Notes:

1 The hexadecimal value specified in this position must include the tag and
length fields of the BER. Note that this is different from the hexadecimal
values specified for other types.

The only valid format for an application program to use for an ANY value is
hexadecimal BER.

How CMIP Services Sends an ANY Value to an Application
Program
CMIP services sends an ANY value in hexadecimal BER format. It is important to
note that the hexadecimal value for an ANY value includes the tag and length
portions of the BER, in contrast to the hexadecimal BER formats of the other types.

CMIP services places labels in the string for all elements of the syntax that are
present.

Additional Examples of How Application Programs Send Data
The following examples demonstrate how an application program can send primitive
types and the more complex ASN.1 data types.

(a 2, b 111011011)

A BIT STRING — because the type must be B : : = BIT STRING
The label for the second element of the SEQUENCE X

The label for the first element of the SEQUENCE X

The value of the first element of SEQUENCE X

Because this is 2, the type of the second element of x
must be B (from ANY TABLE Y) which is a BIT STRING

Figure 4. Defining a Bit String Field

Decision Types

Chapter 7. Rules for Constructing Standard CMIP Strings 117

The first examples are based on the following ASN.1 module:
Abc DEFINITIONS IMPLICIT TAGS ::= BEGIN

A ::= BOOLEAN
B ::= INTEGER
C ::= ENUMERATED {a(0), b(2), c(5), d(10)}
D ::= REAL
E ::= BIT STRING
F ::= OCTET STRING
G ::= NULL
H ::= OBJECT IDENTIFIER

a A ::= TRUE
b B ::= 12
c C ::= 10
e E ::= B'10010'
f F ::= H'1234567890'
g G ::= NULL
h H ::= { iso icd(3) 18 0 0 6 }

END

The following are all valid input strings:

Module Type String

Abc A TRUE

Abc A false

Abc A a

Abc B -12345

Abc B 0

Abc B 500000

Abc B b

Abc C b

Abc C c

Abc D 3.125

Abc D -12E25

Abc E 11011011010

Abc E ″″

Abc E e

Abc F 1234567890123456

Abc F f

Abc F ″″

Abc G NULL

Abc G g

Abc H 1.3.18.0.3

Abc H 0.0

Abc H 1.2.5.355465.2.1

Abc H h

The second set of examples show how to specify some constructed data types.
This set of examples is based on the following ASN.1 module:

Decision Types

118 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Xyz DEFINITIONS IMPLICIT TAGS ::= BEGIN

X ::= SEQUENCE
{

a INTEGER,
b BOOLEAN OPTIONAL,
c INTEGER,
d BIT STRING

}
Y ::= SET OF INTEGER
Z ::= SEQUENCE

{
a X,
b Y

}

END

The following are all valid strings that the application program can send to CMIP
services.

Module Type String

Xyz X (a 12, b TRUE, c 56000, d 1101101)

Xyz X (a 12, c 56000, d “1101101”)

Xyz X (12, FALSE, 0, ″″)

Xyz Y (1, 2, 3, 4, 5, 6, 7, 8)

Xyz Y (1,2,3,4,5,6)

Xyz Y ()

Xyz Z (a (a 12, b TRUE, c 56000, d 1101101), b (1,2,3,4))

Xyz Z (a (a 12, c 56000, d 1101101), b ())

Xyz Z ((a 12, c 56000, d 1101101), ())

Decision Types

Chapter 7. Rules for Constructing Standard CMIP Strings 119

Decision Types

120 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Chapter 8. Examples of Standard CMIP Strings

This section contains examples of the CMIP strings that are sent between
application programs and CMIP services.

The requests and responses are sent from the application program to CMIP
services using the MIBSendCmipRequest and MIBSendCmipResponse functions.
For a description of these functions, refer to pages “MIBSendCmipRequest—CMIP
Request Function” on page 70 and “MIBSendCmipResponse—CMIP Response
Function” on page 73. The indications and confirmations are received by the
application program using the read queue exit routine or the dataspace dequeue
routine.

The following example shows the call that an application program makes to the
MIBSendCmipRequest to send a CMIP request. The values for the variables
OperationValue and Argument will be determined by the type of request being sent.
Examples on the following pages will show specific examples for the values of
these variables.

int LinkId;
int rc;
void *LocalId;
unsigned int InvokeId;
unsigned int OperationValue;
char Argument[4096];

rc = MIBSendCmipRequest(LinkId,
OperationValue, /* 3 for GET, 7 for Action,

8 for CREATE, etc. */
Argument,
LocalId,
NULL, /* don't override source object

specified by LocalId */
DS_NOT_PROVIDED, /* don't override dest */
NULL,
&InvokeId);

The following example shows the call that an application program makes to the
MIBSendCmipResponse to send a CMIP response. The values for the variables
OperationValue and Argument will be determined by the type of response being
sent. Examples on the following pages will show specific examples for the values of
these variables.

char *AssocHandleFromRequest;
int LinkId;
int rc;
void *LocalId;
unsigned int InvokeId, InvokeIdFromRequest;
unsigned int OperationValue;
char Argument[4096];

rc = MIBSendCmipResponse(LinkId,
InvokeIdFromRequest,
1, /* last-in-chain indicator */
1, /* successful */
OperationValue, /* 3 for GET, 7 for Action,

8 for CREATE, etc. */
Argument,
LocalId,
NULL, /* don't override source object

© Copyright IBM Corp. 1995, 2001 121

specified by LocalId */
AssocHandleFromRequest,
&InvokeId);

Requests and Indications
The following descriptions are for CMIP requests and indications. A request is the
message sent by a manager application program to an agent application program
via the MIBSendCmipRequest function.

An indication is the message received by the agent application program
corresponding to the request.

For each request, the following information is included:
v ASN.1 syntax
v Example request string
v Corresponding indication

GET Request—Syntax
GetArgument ::= SEQUENCE

{
baseManagedObjectClass ObjectClass,
baseManagedObjectInstance ObjectInstance,
accessControl [5] AccessControl OPTIONAL,
synchronization [6] IMPLICIT CMISSync DEFAULT bestEffort,
scope [7] Scope DEFAULT base-and : baseObject,
filter CMISFilter DEFAULT and : {},
attributeIdList [12] IMPLICIT SET OF AttributeId OPTIONAL

}

GET Request—Example Request String
The operation-value for GET is 3, so the value of the OperationValue variable will
be 3 as well.

Here is an example value of the Argument variable:
(baseManagedObjectClass 2.9.3.2.3.13,baseManagedObjectInstan
ce (distinguishedName "1.3.18.0.2.4.6=NETA;2.9.3.2.7.4=(name
SSCP1A)"))

This will retrieve the values of all attributes of the system object on host
NETA.SSCP1A.

GET Request—Corresponding Indication
Here is an example GET indication corresponding to the previous GET request
example, as received by the application. This shows the APIhdr at the beginning of
the message.

00000100 0003000A 00000001 00000001 *................*
2FAA4356 00000000 00000000 01120020 *................*
A2998360 A3A89785 40F16B40 A2998340 *src-type 1, src *
81F16B40 94A28740 C3D4C9D7 60F14BD5 *a1, msg CMIP-1.N*
96A38986 898381A3 89969540 4D8995A5 *otification (inv*
969285C9 C440F1F9 F6F6F1F8 6B409697 *okeID 196618, op*
859981A3 89969560 A58193A4 8540F06B *eration-value 0,*
40819987 A4948595 A3404D94 81958187 * argument (manag*
8584D682 918583A3 C39381A2 A240F14B *edObjectClass 1.*
F34BF1F8 4BF04BF0 4BF2F2F6 F76B4094 *3.18.0.0.2267, m*

Examples of Standard CMIP Strings

122 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

81958187 8584D682 918583A3 C995A2A3 *anagedObjectInst*
81958385 404D8489 A2A38995 87A489A2 *ance (distinguis*
888584D5 81948540 7DF14BF3 4BF1F84B *hedName '1.3.18.*
F04BF24B F44BF67E D5C5E3C1 5EF14BF3 *0.2.4.6=NETA;1.3*
4BF1F84B F04BF04B F2F0F3F2 7EE2E2C3 *.18.0.0.2032=SSC*
D7F1C15E F14BF34B F1F84BF0 4BF04BF2 *P1A;1.3.18.0.0.2*
F2F7F27E E2E6C9E3 C3C8C5C4 4BE2E6D5 *272=SWITCHED.SWN*
C4F3C1C2 F77D5D6B 4085A585 95A3E3A8 *D3AB7'), eventTy*
978540F2 4BF94BF3 4BF24BF1 F04BF65D *pe 2.9.3.2.10.6)*
5D00 *). *

ACTION Request—Syntax
ActionArgument ::= SEQUENCE {

baseManagedObjectClass ObjectClass,
baseManagedObjectInstance ObjectInstance,
accessControl [5] AccessControl OPTIONAL,
synchronization [6] IMPLICIT CMISSync DEFAULT bestEffort,
scope [7] Scope OPTIONAL,
filter CMISFilter DEFAULT and : {},
actionInfo [12] IMPLICIT ActionInfo
}

ACTION Request—Example Request String
The operation-value for ACTION is 7, so the value of the OperationValue variable
will be 7 as well.

Here is an example value of the Argument variable:
(baseManagedObjectClass 1.3.18.0.0.2151,baseManagedObjectIns
tance (distinguishedName "1.3.18.0.2.4.6=NETA;1.3.18.0.0.203
2=SSCP1A;1.3.18.0.0.2216=(string SnaNetwork)"),actionInfo (a
ctionType 1.3.18.0.0.2222, actionInfoArg (start oneTimeOnly)
))

ACTION Request—Corresponding Indication
Here is an example ACTION indication corresponding to the previous ACTION
request example, as received by the application. This shows the APIhdr at the
beginning of the message.

00000100 00030012 **
00000002 00000001 2FAA536E 00000000 *...........>....*
00000000 0120FA08 A2998360 A3A89785 *........src-type*
40F16B40 A2998340 81F16B40 94A28740 * 1, src a1, msg *
C3D4C9D7 60F14BD9 D6C9E581 9784A440 *CMIP-1.ROIVapdu *
4D8995A5 969285C9 C440F1F9 F6F6F2F6 *(invokeID 196626*
6B409697 859981A3 89969560 A58193A4 *, operation-valu*
8540F76B 40819987 A4948595 A3404D82 *e 7, argument (b*
81A285D4 81958187 8584D682 918583A3 *aseManagedObject*
C39381A2 A240F14B F34BF1F8 4BF04BF0 *Class 1.3.18.0.0*
4BF2F1F5 F16B4082 81A285D4 81958187 *.2151, baseManag*
8584D682 918583A3 C995A2A3 81958385 *edObjectInstance*
404D8489 A2A38995 87A489A2 888584D5 * (distinguishedN*
81948540 4DD98593 81A389A5 85C489A2 *ame (RelativeDis*
A3899587 A489A288 8584D581 9485404D *tinguishedName (*
C1A3A399 8982A4A3 85E58193 A485C1A2 *AttributeValueAs*
A28599A3 89969540 4D81A3A3 998982A4 *sertion (attribu*
A385E3A8 978540F1 4BF34BF1 F84BF04B *teType 1.3.18.0.*
F24BF44B F66B4081 A3A39989 82A4A385 *2.4.6, attribute*
E58193A4 85407FD5 C5E3C17F 5D5D6B40 *Value "NETA")), *
D9859381 A389A585 C489A2A3 899587A4 *RelativeDistingu*
89A28885 84D58194 85404DC1 A3A39989 *ishedName (Attri*
82A4A385 E58193A4 85C1A2A2 8599A389 *buteValueAsserti*
9695404D 81A3A399 8982A4A3 85E3A897 *on (attributeTyp*

Examples of Standard CMIP Strings

Chapter 8. Examples of Standard CMIP Strings 123

8540F14B F34BF1F8 4BF04BF0 4BF2F0F3 *e 1.3.18.0.0.203*
F26B4081 A3A39989 82A4A385 E58193A4 *2, attributeValu*
85407FE2 E2C3D7F1 C17F5D5D 6B40D985 *e "SSCP1A")), Re*
9381A389 A585C489 A2A38995 87A489A2 *lativeDistinguis*
888584D5 81948540 4DC1A3A3 998982A4 *hedName (Attribu*
A385E581 93A485C1 A2A28599 A3899695 *teValueAssertion*
404D81A3 A3998982 A4A385E3 A8978540 * (attributeType *
F14BF34B F1F84BF0 4BF04BF2 F2F1F66B *1.3.18.0.0.2216,*
4081A3A3 998982A4 A385E581 93A48540 * attributeValue *
4DA2A399 89958740 7FE29581 D585A3A6 *(string "SnaNetw*
9699927F 5D5D5D5D 5D6B4081 83A38996 *ork"))))), actio*
95C99586 96404D81 83A38996 95E3A897 *nInfo (actionTyp*
8540F14B F34BF1F8 4BF04BF0 4BF2F2F2 *e 1.3.18.0.0.222*
F26B4081 83A38996 95C99586 96C19987 *2, actionInfoArg*
404DA2A3 8199A340 969585E3 899485D6 * (start oneTimeO*
9593A85D 5D5D5D00 *nly)))). *

Responses and Confirmations
The following descriptions are for CMIP responses and confirmations. A response is
the message sent by an agent application program to a manager application
program via the MIBSendCmipResponse function.

A confirmation is the message received by the manager application program which
corresponds to the response.

For each response or confirmation, the following information is included:
v ASN.1 syntax
v Example response string
v Corresponding confirmation

GET Response—Syntax
GetResult::=

SEQUENCE { managedObjectClass ObjectClass OPTIONAL,
managedObjectInstance ObjectInstance OPTIONAL,
currentTime [5] IMPLICIT GeneralizedTime OPTIONAL,
attributeList [6] IMPLICIT SET OF Attribute OPTIONAL

}

GET Response—Example Response String
The operation-value for GET is 3, so the value of the OperationValue variable will
be 3 as well.

Here is an example value of the Argument variable:
(managedObjectClass &OC,(distinguishedName &DN),attri
buteList ((attributeId 2.9.3.2.7.5, (distinguishedNam
e (((attributeType 1.3.18.0.2.4.6,attributeValue
NETA), (attributeType 2.9.3.2.7.4,attributeValue
(name "SSCP1A")))))), (attributeId 2.9.3.2.7.35, enab
led)))

GET Response—Corresponding Confirmation
Here is an example GET confirmation corresponding to the previous GET response
example, as received by the application. This shows the APIhdr at the beginning of
the message.

00000000 00030008 **
00000003 00000001 2FB39434 00000000 *..........m.....*
00000000 00000001 A2998360 A3A89785 *........src-type*

Examples of Standard CMIP Strings

124 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

40F16B40 A2998340 81F16B40 94A28740 * 1, src a1, msg *
C3D4C9D7 60F14BD9 D6D9E281 9784A440 *CMIP-1.RORSapdu *
4D8995A5 969285C9 C440F1F9 F6F6F1F6 *(invokeID 196616*
6B409985 A2A493A3 D697A389 9695404D *, resultOption (*
96978599 81A38996 9560A581 93A48540 *operation-value *
F36B4099 85A2A493 A3404D94 81958187 *3, result (manag*
8584D682 918583A3 C39381A2 A240F24B *edObjectClass 2.*
F94BF34B F24BF34B F1F36B40 94819581 *9.3.2.3.13, mana*
878584D6 82918583 A3C995A2 A3819583 *gedObjectInstanc*
85404D84 89A2A389 9587A489 A2888584 *e (distinguished*
D5819485 404DD985 9381A389 A585C489 *Name (RelativeDi*
A2A38995 87A489A2 888584D5 81948540 *stinguishedName *
4DC1A3A3 998982A4 A385E581 93A485C1 *(AttributeValueA*
A2A28599 A3899695 404D81A3 A3998982 *ssertion (attrib*
A4A385E3 A8978540 F14BF34B F1F84BF0 *uteType 1.3.18.0*
4BF24BF4 4BF66B40 81A3A399 8982A4A3 *.2.4.6, attribut*
85E58193 A485407F D5C5E3C1 7F5D5D6B *eValue "NETA")),*
40D98593 81A389A5 85C489A2 A3899587 * RelativeDisting*
A489A288 8584D581 9485404D C1A3A399 *uishedName (Attr*
8982A4A3 85E58193 A485C1A2 A28599A3 *ibuteValueAssert*
89969540 4D81A3A3 998982A4 A385E3A8 *ion (attributeTy*
978540F2 4BF94BF3 4BF24BF7 4BF46B40 *pe 2.9.3.2.7.4, *
81A3A399 8982A4A3 85E58193 A485404D *attributeValue (*
95819485 407FE2E2 C3D7F1C1 7F5D5D5D *name "SSCP1A")))*
5D5D6B40 81A3A399 8982A4A3 85D389A2 *)), attributeLis*
A3404DC1 A3A39989 82A4A385 404D81A3 *t (Attribute (at*
A3998982 A4A385C9 8440F24B F94BF34B *tributeId 2.9.3.*
F24BF74B F56B4081 A3A39989 82A4A385 *2.7.5, attribute*
E58193A4 85404D84 89A2A389 9587A489 *Value (distingui*
A2888584 D5819485 404DD985 9381A389 *shedName (Relati*
A585C489 A2A38995 87A489A2 888584D5 *veDistinguishedN*
81948540 4DC1A3A3 998982A4 A385E581 *ame (AttributeVa*
93A485C1 A2A28599 A3899695 404D81A3 *lueAssertion (at*
A3998982 A4A385E3 A8978540 F14BF34B *tributeType 1.3.*
F1F84BF0 4BF24BF4 4BF66B40 81A3A399 *18.0.2.4.6, attr*
8982A4A3 85E58193 A485407F D5C5E3C1 *ibuteValue "NETA*
7F5D6B40 C1A3A399 8982A4A3 85E58193 *"), AttributeVal*
A485C1A2 A28599A3 89969540 4D81A3A3 *ueAssertion (att*
998982A4 A385E3A8 978540F2 4BF94BF3 *ributeType 2.9.3*
4BF24BF7 4BF46B40 81A3A399 8982A4A3 *.2.7.4, attribut*
85E58193 A485404D 95819485 407FE2E2 *eValue (name "SS*
C3D7F1C1 7F5D5D5D 5D5D5D6B 40C1A3A3 *CP1A")))))), Att*
998982A4 A385404D 81A3A399 8982A4A3 *ribute (attribut*
85C98440 F24BF94B F34BF24B F74BF3F5 *eId 2.9.3.2.7.35*
6B4081A3 A3998982 A4A385E5 8193A485 *, attributeValue*
40859581 82938584 5D5D5D5D 5D00 * enabled))))). *

CREATE Response—Syntax
CreateResult::=

SEQUENCE { managedObjectClass ObjectClass OPTIONAL,
managedObjectInstance ObjectInstance OPTIONAL,
currentTime [5] IMPLICIT GeneralizedTime OPTIONAL,
attributeList [6] IMPLICIT SET OF Attribute OPTIONAL
}

CREATE Response—Example Response String
The operation-value for CREATE is 8, so the value of the OperationValue variable
will be 8 as well.

Here is an example value of the Argument variable:
(managedObjectClass 1.3.18.0.0.2054, (distinguis
hedName '1.3.18.0.2.4.6=NETA;2.9.3.2.7.4=(name "
SSCP1A");2.9.3.2.7.1=(string "EFD00001")'), attr

Examples of Standard CMIP Strings

Chapter 8. Examples of Standard CMIP Strings 125

ibuteList ((2.9.3.2.7.65, 1.3.18.0.0.2),(2.9.3.2
.7.1, (string "EFD00001")),(2.9.3.2.7.66, (2.9.3
.2.4.17,2.9.3.2.4.22,1.3.18.0.0.2063)),(2.9.3.2.
7.50, (2.9.3.2.3.4)),(2.9.3.2.7.31, unlocked),(2
.9.3.2.7.35, enabled),(1.3.18.0.0.2775, ()),(2.9
.3.2.7.33, ()),(2.9.3.2.7.56,(item (equality (at
tributeId 2.9.3.2.7.14, attributeValue 2.9.3.2.1
0.7)))),(2.9.3.2.7.55,(single (name (RDNSequence
(RelativeDistinguishedName (AttributeValueAsser
tion (attributeType 1.3.18.0.2.4.6, attributeVal
ue "NETA")), RelativeDistinguishedName (Attribut
eValueAssertion (attributeType 2.9.3.2.7.4, attr
ibuteValue (name "SSCP1A"))), RelativeDistinguis
hedName (AttributeValueAssertion (attributeType
1.3.18.0.2.4.12, attributeValue "aplposec"))))))
),(2.9.3.2.7.63,2.9.3.2.6.1)))

CREATE Response—Corresponding Confirmation
Here is an example CREATE confirmation corresponding to the previous CREATE
response example, as received by the application. This shows the APIhdr at the
beginning of the message.

00000000 0003000A **
00000003 00000001 2FB398C6 00000000 *..........qF....*
00000000 00000004 A2998360 A3A89785 *........src-type*
40F16B40 A2998340 81F16B40 94A28740 * 1, src a1, msg *
C3D4C9D7 60F14BD9 D6D9E281 9784A440 *CMIP-1.RORSapdu *
4D8995A5 969285C9 C440F1F9 F6F6F1F8 *(invokeID 196618*
6B409985 A2A493A3 D697A389 9695404D *, resultOption (*
96978599 81A38996 9560A581 93A48540 *operation-value *
F86B4099 85A2A493 A3404D94 81958187 *8, result (manag*
8584D682 918583A3 C39381A2 A240F14B *edObjectClass 1.*
F34BF1F8 4BF04BF0 4BF2F0F5 F46B4094 *3.18.0.0.2054, m*
81958187 8584D682 918583A3 C995A2A3 *anagedObjectInst*
81958385 404D8489 A2A38995 87A489A2 *ance (distinguis*
888584D5 81948540 4DD98593 81A389A5 *hedName (Relativ*
85C489A2 A3899587 A489A288 8584D581 *eDistinguishedNa*
9485404D C1A3A399 8982A4A3 85E58193 *me (AttributeVal*
A485C1A2 A28599A3 89969540 4D81A3A3 *ueAssertion (att*
998982A4 A385E3A8 978540F1 4BF34BF1 *ributeType 1.3.1*
F84BF04B F24BF44B F66B4081 A3A39989 *8.0.2.4.6, attri*
82A4A385 E58193A4 85407FD5 C5E3C17F *buteValue "NETA"*
5D5D6B40 D9859381 A389A585 C489A2A3 *)), RelativeDist*
899587A4 89A28885 84D58194 85404DC1 *inguishedName (A*
A3A39989 82A4A385 E58193A4 85C1A2A2 *ttributeValueAss*
8599A389 9695404D 81A3A399 8982A4A3 *ertion (attribut*
85E3A897 8540F24B F94BF34B F24BF74B *eType 2.9.3.2.7.*
F46B4081 A3A39989 82A4A385 E58193A4 *4, attributeValu*
85404D95 81948540 7FE2E2C3 D7F1C17F *e (name "SSCP1A"*
5D5D5D6B 40D98593 81A389A5 85C489A2 *))), RelativeDis*
A3899587 A489A288 8584D581 9485404D *tinguishedName (*
C1A3A399 8982A4A3 85E58193 A485C1A2 *AttributeValueAs*
A28599A3 89969540 4D81A3A3 998982A4 *sertion (attribu*
A385E3A8 978540F2 4BF94BF3 4BF24BF7 *teType 2.9.3.2.7*
4BF16B40 81A3A399 8982A4A3 85E58193 *.1, attributeVal*
A485404D A2A39989 9587407F C5C6C4F0 *ue (string "EFD0*
F0F0F0F1 7F5D5D5D 5D5D6B40 81A3A399 *0001"))))), attr*
8982A4A3 85D389A2 A3404DC1 A3A39989 *ibuteList (Attri*
82A4A385 404D81A3 A3998982 A4A385C9 *bute (attributeI*
8440F24B F94BF34B F24BF74B F6F56B40 *d 2.9.3.2.7.65, *
81A3A399 8982A4A3 85E58193 A48540F1 *attributeValue 1*
4BF34BF1 F84BF04B F04BF25D 6B40C1A3 *.3.18.0.0.2), At*
A3998982 A4A38540 4D81A3A3 998982A4 *tribute (attribu*
A385C984 40F24BF9 4BF34BF2 4BF74BF1 *teId 2.9.3.2.7.1*
6B4081A3 A3998982 A4A385E5 8193A485 *, attributeValue*
404DA2A3 99899587 407FC5C6 C4F0F0F0 * (string "EFD000*

Examples of Standard CMIP Strings

126 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

F0F17F5D 5D6B40C1 A3A39989 82A4A385 *01")), Attribute*
404D81A3 A3998982 A4A385C9 8440F24B * (attributeId 2.*
F94BF34B F24BF74B F6F66B40 81A3A399 *9.3.2.7.66, attr*
8982A4A3 85E58193 A485404D D6C2D1C5 *ibuteValue (OBJE*
C3E360C9 C4C5D5E3 C9C6C9C5 D940F24B *CT-IDENTIFIER 2.*
F94BF34B F24BF44B F1F76B40 D6C2D1C5 *9.3.2.4.17, OBJE*
C3E360C9 C4C5D5E3 C9C6C9C5 D940F24B *CT-IDENTIFIER 2.*
F94BF34B F24BF44B F2F26B40 D6C2D1C5 *9.3.2.4.22, OBJE*
C3E360C9 C4C5D5E3 C9C6C9C5 D940F14B *CT-IDENTIFIER 1.*
F34BF1F8 4BF04BF0 4BF2F0F6 F35D5D6B *3.18.0.0.2063)),*
40C1A3A3 998982A4 A385404D 81A3A399 * Attribute (attr*
8982A4A3 85C98440 F24BF94B F34BF24B *ibuteId 2.9.3.2.*
F74BF5F0 6B4081A3 A3998982 A4A385E5 *7.50, attributeV*
8193A485 404DD682 918583A3 C39381A2 *alue (ObjectClas*
A240F24B F94BF34B F24BF34B F45D5D6B *s 2.9.3.2.3.4)),*
40C1A3A3 998982A4 A385404D 81A3A399 * Attribute (attr*
8982A4A3 85C98440 F24BF94B F34BF24B *ibuteId 2.9.3.2.*
F74BF3F1 6B4081A3 A3998982 A4A385E5 *7.31, attributeV*
8193A485 40A49593 96839285 845D6B40 *alue unlocked), *
C1A3A399 8982A4A3 85404D81 A3A39989 *Attribute (attri*
82A4A385 C98440F2 4BF94BF3 4BF24BF7 *buteId 2.9.3.2.7*
4BF3F56B 4081A3A3 998982A4 A385E581 *.35, attributeVa*
93A48540 85958182 9385845D 6B40C1A3 *lue enabled), At*
A3998982 A4A38540 4D81A3A3 998982A4 *tribute (attribu*
A385C984 40F14BF3 4BF1F84B F04BF04B *teId 1.3.18.0.0.*
F2F7F7F5 6B4081A3 A3998982 A4A385E5 *2775, attributeV*
8193A485 404D5D5D 6B40C1A3 A3998982 *alue ()), Attrib*
A4A38540 4D81A3A3 998982A4 A385C984 *ute (attributeId*
40F24BF9 4BF34BF2 4BF74BF3 F36B4081 * 2.9.3.2.7.33, a*
A3A39989 82A4A385 E58193A4 85404D5D *ttributeValue ()*
5D6B40C1 A3A39989 82A4A385 404D81A3 *), Attribute (at*
A3998982 A4A385C9 8440F24B F94BF34B *tributeId 2.9.3.*
F24BF74B F5F66B40 81A3A399 8982A4A3 *2.7.56, attribut*
85E58193 A485404D 89A38594 404D8598 *eValue (item (eq*
A4819389 A3A8404D 81A3A399 8982A4A3 *uality (attribut*
85C98440 F24BF94B F34BF24B F74BF1F4 *eId 2.9.3.2.7.14*
6B4081A3 A3998982 A4A385E5 8193A485 *, attributeValue*
40F24BF9 4BF34BF2 4BF1F04B F75D5D5D * 2.9.3.2.10.7)))*
5D6B40C1 A3A39989 82A4A385 404D81A3 *), Attribute (at*
A3998982 A4A385C9 8440F24B F94BF34B *tributeId 2.9.3.*
F24BF74B F5F56B40 81A3A399 8982A4A3 *2.7.55, attribut*
85E58193 A485404D A2899587 9385404D *eValue (single (*
95819485 404DD9C4 D5E28598 A4859583 *name (RDNSequenc*
85404DD9 859381A3 89A585C4 89A2A389 *e (RelativeDisti*
9587A489 A2888584 D5819485 404DC1A3 *nguishedName (At*
A3998982 A4A385E5 8193A485 C1A2A285 *tributeValueAsse*
99A38996 95404D81 A3A39989 82A4A385 *rtion (attribute*
E3A89785 40F14BF3 4BF1F84B F04BF24B *Type 1.3.18.0.2.*
F44BF66B 4081A3A3 998982A4 A385E581 *4.6, attributeVa*
93A48540 7FD5C5E3 C17F5D5D 6B40D985 *lue "NETA")), Re*
9381A389 A585C489 A2A38995 87A489A2 *lativeDistinguis*
888584D5 81948540 4DC1A3A3 998982A4 *hedName (Attribu*
A385E581 93A485C1 A2A28599 A3899695 *teValueAssertion*
404D81A3 A3998982 A4A385E3 A8978540 * (attributeType *
F24BF94B F34BF24B F74BF46B 4081A3A3 *2.9.3.2.7.4, att*
998982A4 A385E581 93A48540 4D958194 *ributeValue (nam*
85407FE2 E2C3D7F1 C17F5D5D 5D6B40D9 *e "SSCP1A"))), R*
859381A3 89A585C4 89A2A389 9587A489 *elativeDistingui*
A2888584 D5819485 404DC1A3 A3998982 *shedName (Attrib*
A4A385E5 8193A485 C1A2A285 99A38996 *uteValueAssertio*
95404D81 A3A39989 82A4A385 E3A89785 *n (attributeType*
40F14BF3 4BF1F84B F04BF24B F44BF1F2 * 1.3.18.0.2.4.12*
6B4081A3 A3998982 A4A385E5 8193A485 *, attributeValue*
407F8197 939796A2 85837F5D 5D5D5D5D * "aplposec")))))*
5D5D6B40 C1A3A399 8982A4A3 85404D81 *)), Attribute (a*
A3A39989 82A4A385 C98440F2 4BF94BF3 *ttributeId 2.9.3*

Examples of Standard CMIP Strings

Chapter 8. Examples of Standard CMIP Strings 127

4BF24BF7 4BF6F36B 4081A3A3 998982A4 *.2.7.63, attribu*
A385E581 93A48540 F24BF94B F34BF24B *teValue 2.9.3.2.*
F64BF15D 5D5D5D5D 00 *6.1))))). *

Examples of Standard CMIP Strings

128 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Chapter 9. Create and Delete Requests

This chapter describes how an application program uses CMIP services to remotely
create and delete objects on agent systems.

Objects are not directly created or deleted by CMIP services in response to CMIP
m-Create and m-Delete requests. When a manager application program sends a
create or delete request to an agent system, these requests are processed by
CMIP agent application programs.

Create Requests
CMIP services requires that the create request provide the distinguished name of
the object being created.

For an object to be created by CMIP services, the name binding to be used for the
object must explicitly specify that the create operation is supported. If the name
binding does not explicitly specify that the create operation is supported, the create
request is rejected.

Because objects are not directly created by CMIP services, an application program
must exist that is capable of processing the create request.

CMIP services looks for an application program to handle the create request; this
application program is called a create handler.

v If CMIP services finds a create handler, CMIP services sends the create request
to the create handler.

v If CMIP services cannot find a create handler, CMIP services rejects the create
request with a noSuchObjectClass error.

When the create handler receives the create request, it does one of the following:
v Creates the new object requested on the create request
v Rejects the create request for the new object
v Creates an object different from the object requested on the create request.

Creating the New Object Requested on the Create Request
To create a new object that is to be registered on the same connection as the
create handler, the create handler registers the new object with the
MIBSendRegister function using the same distinguished name and object class that
were specified on the create request.

After the create handler registers the new object, the create handler acknowledges
the create request. The create handler uses the MIBSendCmipResponse function to
return the response to the sender of the create request.

Rejecting the Create Request
If the create handler decides to reject the create request, the create handler uses
the MIBSendDeleteRegistration function with no local identifier and the object name
provided with the create request to remove the pending registration for object that
was requested to be created.

© Copyright IBM Corp. 1995, 2001 129

Then the create handler uses the MIBSendCmipResponse function to return an
error response to the sender of of the create request. The error describes to the
manager application program why the create request was rejected.

Creating an Object Different from Object on the Create Request
If the create handler decides to create an object different from the one that was
requested to be created, the create handler uses the MIBSendDeleteRegistration
function with no local identifier and the object name provided with the create
request to remove the pending registration for object that was requested to be
created. Then the create handler registers the other object with the
MIBSendRegister function.

After the create handler registers the new object, the create handler acknowledges
the create request. The create handler uses the MIBSendCmipResponse function to
return the response to the sender of the create request.

Delete Requests

Because objects are not directly deleted by CMIP services, all application programs
must be able to handle delete requests.

For registered objects, the application program sends the delete request to the
application program that registered the object. For objects that are not registered,
the application program sends the delete request to the subtree manager of the
object. The create handler is not involved in the processing of the delete request.

When an application program receives the delete request, it either deletes the
object or rejects the delete request. These two situations are described here for
non-scoped delete requests.

Deleting the Object Requested on the Delete Request
In this situation, a manager application program requests that an object be deleted
and the agent application program that owns the object allows it to be deleted. In
general, these are the steps that are followed:

1. The manager application program issues the CMIP delete request for an object.

2. CMIP services sends an ROIV message to the agent application program that
owns the object.

3. The agent application program sends the MIB.DeleteResponse with a result
code of 0 to CMIP services.

4. CMIP services sends MIB.Delete with an action code of 0 to the agent
application program.

5. The agent application program uses the MIBSendCmipResponse to return the
CMIP delete response to CMIP services.

6. CMIP services sends an RORS to the manager application program containing
the application program’s delete response.

7. CMIP services sends the API_TERMINATE_INSTANCE to the deleted object.

Rejecting the Delete Request
In this situation, a manager application program requests that an object be deleted
and the agent application program that owns the object rejects the delete request.
In general, these are the steps that are followed:

1. The manager application program issues the CMIP delete request for an object.

Create and Delete Requests

130 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

2. CMIP services sends an ROIV message to the agent application program that
owns the object.

3. The agent application program sends the MIB.DeleteResponse with a result
code of 1 to CMIP services.

4. CMIP services sends an ROER to the manager application program.

Subtree managers might receive deletes that were not scoped specifically to the
subtree manager object but that might apply to an object under the subtree
manager. The subtree manager must perform delete processing with its objects.

Create and Delete Requests

Chapter 9. Create and Delete Requests 131

132 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Chapter 10. VTAM-Specific Requests and Responses

The following VTAM-specific requests and responses are accepted and processed
by VTAM CMIP services. The requests are sent by the MIBSendRequest function.
The responses are sent from CMIP Services to the application program. These
requests and responses allow the application program to perform certain actions
that are specific to VTAM CMIP services, such as:
v Subscribing to association information
v Registering an application entity title
v Starting associations
v Ending associations
v Getting association information
v Creating a dedicated association.

Here are the requests and responses:
v ACF.Subscribe
v ACF.UnSubscribe
v ACF.RegisterAE
v ACF.Associate
v ACF.Release
v ACF.Abort
v ACF.GetAssociationInfo
v ACF.AssociateRsp
v ACF.SubscribeRsp
v ACF.SubscribeMess
v MIB.GeneralRequest
v MIB.GeneralResponse
v MIB.GeneralError
v MIB.ServiceError
v MIB.ServiceAccept
v MIB.RegisterAccept

In the following sections, please note that the example strings are divided across
multiple lines for legibility only. The actual strings being sent must be continuous.

Subscribing to Association Information
The ACF.Subscribe and ACF.UnSubscribe strings cause CMIP services to notify an
application program when the state of an association changes. These strings are
used only when an application program depends on maintaining a connection with
another application program. Because associations are automatically started when
they are needed, these strings are used infrequently.

Syntax for the Subscription Strings
The following strings relate to subscribing to associations:
v ACF.Subscribe
v ACF.UnSubscribe
v ACF.SubscribeRsp
v ACF.SubscribeMess.

The syntax for each string is shown here. Notice that the same response string,
ACF.SubscribeRsp, is used for both the ACF.Subscribe and the ACF.UnSubscribe
strings. Zero on the ACF.SubscribeRsp string indicates success; nonzero response
values are in “Appendix A. C Language Header File (ACYAPHDH)” on page 231.

© Copyright IBM Corp. 1995, 2001 133

For a distinguished name, either the full name or an abbreviated version can be
used. The error code 803 indicates that the association does not exist.
Subscribe ::= CHOICE {

ae-title TitleType,
association [2] IMPLICIT HandleType
}

UnSubscribe ::= CHOICE {
ae-title TitleType,
association [2] IMPLICIT HandleType
}

TitleType ::= CHOICE {
oi [0] IMPLICIT OBJECT IDENTIFIER
dn [1] IMPLICIT DistinguishedName
}

HandleType ::= PrintableString (SIZE(1..36))

When the state of an association changes and an application program has
registered to receive notification of changes through the ACF.Subscribe string, an
ACF.SubscribeMess string is sent to that application program:
SubscribeMess ::= SubscribeState

The ACF.SubscribeMess syntax does not include the handle of the association
whose state has changed. That can be found in the src field of the string header.

In the list of ACF.SubscribeState values, the following values have meaning:
v associated (means the association is established and running)
v terminated (means the association is ended).

The idle state is a temporary initial state. The wait-a-.... states are transitional
states. The wait-a-assoc-... states indicate that a new association is in the
process of being established. The wait-a-rel-... states show that an existing
association is in the process of being terminated.
SubscribeState ::= INTEGER {

idle (0),
wait-a-assoc-rsp (1),
wait-a-assoc-ind (2),
wait-a-assoc-cnf (3),
wait-a-rel-rsp (4),
wait-a-rel-cnf (5),
associated (8),
wait-a-rel-cnf-indicator (9),
wait-a-rel-rsp-responder (10),
terminated (11)
}

Examples of Subscription Strings
ACF.Subscribe (association 'a2')
ACF.SubscribeRsp 803

ACF.Subscribe (ae-title (dn
(RelativeDistinguishedName (AttributeValueAssertion
(attributeType 1.3.18.0.2.4.6, attributeValue NETA)),
RelativeDistinguishedName (AttributeValueAssertion
(attributeType 2.9.3.2.7.4, attributeValue (name SSCP1A))),
RelativeDistinguishedName (AttributeValueAssertion
(attributeType 1.3.18.0.2.4.12, attributeValue MYAENAME))))

ACF.SubscribeRsp 0

ACF.UnSubscribe (association s7B1920)

VTAM-Specific Requests and Responses

134 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

ACF.SubscribeRsp 0

ACF.UnSubscribe (ae-title (dn "1.3.18.0.2.4.6=NETA;2.9.3.2
.7.4=(name SSCP1A);1.3.18.0.2.4.12=OSISMASE"))

ACF.SubscribeRsp 0

ACF.SubscribeMess 8

How the Subscription Strings Are Used
To establish a subscription:

1. An application program builds an ACF.Subscribe string and sends it to CMIP
services.

2. CMIP services registers the subscription and returns an ACF.SubscribeRsp
string to indicate the success or failure of the subscription.

3. When the state of the association changes, CMIP services sends an
ACF.SubscribeMess string to the application program containing the new state
of the association.

To terminate a subscription:

1. An application program builds an ACF.UnSubscribe string and sends it to CMIP
services.

2. CMIP services deletes the subscription and returns an ACF.SubscribeRsp string
to indicate the success or failure of the deletion. An ACF.SubscribeRsp string
that indicates success does not mean that a subscription did exist.

Registering an Application Entity
The ACF.RegisterAE request is used to register an explicit application entity with
CMIP services. This function can be used if an application program needs to be its
own application entity. In general, application programs do not need to use this
function. The default local application entity handles all of the application program
strings for an association.

An application program must register as its own application entity, if:

v The application program is going to create EFDs

v The application program needs to request a dedicated association. For a
description of how to create a dedicated association, refer to “Creating a
Dedicated Association” on page 140.

Any application program can register an application entity, but only one application
program can register any particular application entity. For example, application
programs A and B can each register application entities A’ and B’, but application
program B cannot register A’ once it has already been registered by application
program A.

Any application program can register multiple application entities, but multiple
application programs cannot register the same application entity.

Once an application entity has been registered, any associations that are remotely
initiated specifying the application entity as the destination of the association are
associated directly with the application program that registered the application
entity. Any strings that do not include targeting information, such as events, are sent
to the application entity directly.

VTAM-Specific Requests and Responses

Chapter 10. VTAM-Specific Requests and Responses 135

The ACF.RegisterAE request can be used to create an application entity that
represents a single application program on CMIP services. This string can be useful
if the application program needs to receive event reports directly from other
systems.

Syntax of the Registration Strings
The ACF.RegisterAE request is used to register an application entity.

The syntax for each string is shown here.
RegisterAE ::= TitleType

TitleType ::= CHOICE {
oi [0] IMPLICIT OBJECT IDENTIFIER
dn [1] IMPLICIT DistinguishedName
}

RegisterRsp ::= INTEGER {
success (0),
not-accomplished (1)
}

Examples of RegisterAE Strings
The second example, identical to the first, fails because an application entity name
can be registered only once by each instance of CMIP services.
ACF.RegisterAE (dn "1.3.18.0.2.4.6=NETA;2.9.3.2.7.

4=(name SSCP1A);1.3.18.0.2.4.12=MYAENAME")
MIB.ServiceAccept()

ACF.RegisterAE (dn "1.3.18.0.2.4.6=NETA;2.9.3.2.7.
4=(name SSCP1A);1.3.18.0.2.4.12=MYAENAME")

MIB.ServiceError(resultCode 827)

How the Registration Strings Are Used
To register an application entity title:

1. An application program builds an ACF.RegisterAE request and sends it to CMIP
services. CMIP services adds the identification of the source of the string, as
with any other string.

2. CMIP services adds the application entity title to the list of supported local
application entity titles and sets up communication so that local strings destined
for this application entity take the same short path (with no encoding or
decoding performed) as the local strings that are sent to the default local
application entity.

3. CMIP services associates the name of the instance with the application entity
being registered. This information is added to strings that arrive on associations
with the application entity by CMIP services.

4. CMIP services responds to the instance indicating that the application entity has
been registered.

Starting Associations
The ACF.Associate string causes CMIP services to start an association explicitly on
behalf of an application program. In general, this string is not needed.

The ACF.Associate string can be used to establish a dedicated association for
application programs that require them. For a description of how to create a
dedicated association, refer to “Creating a Dedicated Association” on page 140.

VTAM-Specific Requests and Responses

136 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Syntax of the Associate Strings
The following strings relate to starting an associations:
v ACF.Associate
v ACF.AssociateRsp

The syntax for each string is shown here.
Associate ::= SEQUENCE {

targetAE TitleType,
securityInfo OCTET STRING OPTIONAL
}

TitleType ::= CHOICE {
oi [0] IMPLICIT OBJECT IDENTIFIER
dn [1] IMPLICIT DistinguishedName
}

Examples of the Associate Strings
The example that includes the MIB.ServiceError string shows what happens when
the target system is not connected: no association can be established.
ACF.Associate(targetAE (dn "1.3.18.0.2.4.6=NETA;2.9.3.2.

7.4=(name SSCP1A);1.3.18.0.2.4.12=MYAENAME"))
ACF.AssociateRsp (handle aF)

ACF.Associate(targetAE (dn "1.3.18.0.2.4.6=NETB;2.9.3.2.
7.4=(name SSCP1A);1.3.18.0.2.4.12=OSISMASE"))

MIB.ServiceError(resultCode 817)

How the Associate Strings Are Used
When an application program sends an ACF.Associate string to CMIP services and
the application program has already issued the ACF.RegisterAE request, a
dedicated association is created. For information about a dedicated association,
refer to “Creating a Dedicated Association” on page 140.

When an application program sends an ACF.Associate string to CMIP services and
it has not issued registerAE, a default association is created.

A default association and an association created automatically by CMIP services
share the following characteristics:
v Both types of associations can be automatically selected by CMIP services.
v Any application program can destroy the association.
v The association is automatically destroyed by timing out if it is not used.

To establish an association:

1. An application program builds an ACF.Associate string and sends it to CMIP
services.

2. CMIP services initiates an association with the desired application entity and
returns the newly assigned association handle for the association.

Ending Associations
In some cases, an application program knows that an association should be ended.
The ACF.Release and ACF.Abort strings indicate that an association should be
ended gracefully (ACF.Release) or abruptly (ACF.Abort). The ACF.Release string
ensures that all pending messages have cleared before the association is ended.

VTAM-Specific Requests and Responses

Chapter 10. VTAM-Specific Requests and Responses 137

If the association is ended successfully, the MIB.ServiceAccept string is sent. If the
association is not ended successfully, the MIB.ServiceError string is sent. For
description of these strings, refer to “Requests and Responses with the MIB Prefix”
on page 141.

Syntax of the ACF.Release and ACF.Abort Strings
The following strings relate to ending associations:
v ACF.Release
v ACF.Abort.

The syntax for each string is shown here.
Release ::= SEQUENCE {HandleType}

HandleType ::= PrintableString (SIZE(1..36))

Abort ::= SEQUENCE {HandleType}

Examples of the ACF.Release and ACF.Abort Strings
Note that the example that includes the MIB.ServiceError string has an extra right
parenthesis.
ACF.Release (a4))
MIB.ServiceError(resultCode 345,resultMessage "msg ACF.Release (a4))"

ACF.Abort (a8)
MIB.ServiceAccept()

ACF.Release (s17B1440)
MIB.ServiceAccept()

How the ACF.Release and ACF.Abort Strings Are Used
An application program sends either an ACF.Release or ACF.Abort string containing
the identification of the association to be ended. If the association exists, it is
ended. CMIP services sends the ACF.AssociateRsp string to the application
program.

Getting Association Information
In some cases an application program needs to learn about an active association.
An application program can request a number of items corresponding to a specific
association. CMIP services returns values for the following attributes:
v state
v partner-AE-title
v securityInfo
v peerAuthenticationPerformed

Syntax of the GetAssociationInfo String
The ACF.GetAssociationInfo string gathers information about an active association.

This syntax for each string is shown here.
GetAssociationInfo ::= SEQUENCE {

handle GraphicString,
info BIT STRING {

state (0),
assoc-handle (1),
sess-handle (2),
partner-AE-Title (3),

VTAM-Specific Requests and Responses

138 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

application-context (4),
presentation-context-def-list (5),
securityInfo (6),
peerAuthenticationPerformed (7),
}

}

AssociationInfo ::= SET OF InformationPair

InformationPair ::= SEQUENCE {
label GraphicString,
value GraphicString
}

Examples of the GetAssociationInfo String
The first example includes the MIB.ServiceError string because the message did
not specify as many zeros or ones as there are bits in the bit string.

The remaining examples show successful use of ACF.GetAssociationInfo.
ACF.GetAssociationInfo(handle 'a1', info 00010)
MIB.ServiceError(resultCode 804)

ACF.GetAssociationInfo(handle a1, info 00000000)
ACF.AssociationInfo ()

ACF.GetAssociationInfo(handle 'a2', info 00010000)
ACF.AssociationInfo ((partner-AE-Title '1.3.18.0.2.4.6=N

ETA;2.9.3.2.7.4=(name "SSCP1A");1.3.18.0.2.4.12=OSISMASE'))

ACF.GetAssociationInfo(handle 'a3', info 10010000)
ACF.AssociationInfo ((state 8),(partner-AE-Title '1.3.18

.0.2.4.6=NETA;2.9.3.2.7.4=(name "SSCP1A");1.3.18.0.2.4.12=OSISMASE'))

ACF.GetAssociationInfo(handle 's147B290', info 10010011)
ACF.AssociationInfo ((state 8),(partner-AE-Title '1.3.18

.0.2.4.6=NETA;2.9.3.2.7.4=(name "SSCP2A");1.3.18.0.2.4.12=OS
ISMASE'),(securityInfo ""),(peerAuthenticationPerformed TRUE))

ACF.GetAssociationInfo(handle 'aA', info 11111111)
ACF.AssociationInfo ((state 8),(partner-AE-Title '1.3.18

.0.2.4.6=NETA;2.9.3.2.7.4=(name "SSCP2A");1.3.18.0.2.4.12=OS
ISMASE'),(securityInfo A1B2C3D4),(peerAuthenticationPerformed FALSE))

How the GetAssociationInfo String Is Used
An application program sends a GetAssociationInfo string to CMIP services, filling in
the types of information it requires. CMIP services returns an AssociationInfo string
containing the desired information.

The labels used to identify the information on the response are identical to the
named bits on the request.

The value is the value corresponding to the label. For securityInfo, the value is
the information passed (if any) from the association partner when the association
was requested. For securityInfo, the value is saved only on the target CMIP
services.

For peerAuthenticationPerformed, the value (on both initiating and target systems)
is 0 if no authentication is performed by CMIP services and 1 if DES-based security
is performed for this association by CMIP services.

VTAM-Specific Requests and Responses

Chapter 10. VTAM-Specific Requests and Responses 139

Creating a Dedicated Association
A dedicated association is restricted as to who can use it on the CMIP services that
created the association. A dedicated association has the following characteristics:

v It is only used if specifically requested by the application program that sends the
ACF.Associate string to CMIP services.

v It can only be destroyed by an ACF.Release or ACF.Abort string from the
application program that sent the ACF.Associate string.

Note: On the other CMIP services, the association is not flagged as dedicated.
Therefore, it can time out or be used by any application program.

In some cases, application programs need to monitor the existence of remote
systems. For example, an application program might need to be aware when a
remote system fails. Having EFDs on that remote system helps only in cases when
actual communication remains intact. If connectivity to the remote system is lost,
the application program might not be notified of the event. If the application program
needs to know that connectivity is lost, the application program can start a
dedicated association to the remote system and monitor it for failures.

Idle CMIP associations are terminated by CMIP services on a regular basis,
according to a timer:

v If limited resources is enabled, the limited resources timer is used.

v If limited resources is not enabled, the CMIP services timer is used. The CMIP
services timer terminates idle associations every 2 hours.

Shared associations, which are those started automatically by CMIP services on an
as-needed basis, are terminated when the timer expires, unless the association is
being used for an outstanding CMIP operation.

Dedicated associations are not terminated on the originating system even if there is
no outstanding work. Note that remote systems, which are those that did not initiate
the dedicated association, are not aware that the association is dedicated. The
remote systems treat the association as shared. The remote systems terminate the
idle association when the timer on the remote system expires.

To prevent associations from being automatically terminated, you can maintain a
never-ending operation on the association. For example, one application program
can be designed to have a special object that never responds to a particular
operation. Another application program can then issue this special operation to that
object, solely for the purpose of maintaining a never-ending operation on the
association.

The application programs can continue to send or receive other operations on that
same association.

In addition to ensuring that the association remains active, an application program
can monitor an association by subscribing to it. When an application program
subscribes to an association, the application program is notified if the association is
terminated. For a description of how to subscribe to an association, refer to
“Subscribing to Association Information” on page 133.

To create a dedicated association, an application program must do the following:

v Register an application entity (AE) title. Refer to “Registering an Application
Entity” on page 135 for more information.

VTAM-Specific Requests and Responses

140 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

v Establish an association with the remote system as the target application entity.
Refer to “Starting Associations” on page 136 for more information.

v Subscribe to the association. Refer to “Subscribing to Association Information” on
page 133 for more information.

Requests and Responses with the MIB Prefix
The following requests and responses are described in this section:
v MIB.GeneralRequest
v MIB.GeneralResponse
v MIB.GeneralError
v MIB.ServiceError
v MIB.ServiceAccept
v MIB.RegisterAccept

MIB.GeneralRequest, MIB.GeneralResponse, and MIB.GeneralError
These messages are built on behalf of the application program by the
MIBSendCmipRequest and MIBSendCmipResponse functions. An application
program does not build them and an application program will not receive them.
They appear in buffer traces of application programs that call the
MIBSendCmipRequest or MIBSendCmipResponse functions.

MIB.ServiceError
The MIB.ServiceError message is sent to an application program from CMIP
services when a request or response from the application program cannot be
processed for some reason. Some example reasons are parsing errors in the
request, network errors trying to reach the destination object, or memory allocation
errors.

For some types of errors, additional information will be provided in the optional
resultMessage section of the ServiceError SEQUENCE.

Here is a sample ServiceError as received by an application, including the APIhdr:
03000000 00030017 00000003 00000001 *................*
2FAA7B32 013D0000 00000000 00000001 *..#.............*
94A28740 D4C9C24B E28599A5 898385C5 *msg MIB.ServiceE*
99999699 4D9985A2 A493A3C3 96848540 *rror(resultCode *
F3F1F76B 9985A2A4 93A3D485 A2A28187 *317,resultMessag*
85407FA4 948595A3 404DF24B F94BF34B *e "ument (2.9.3.*
F24BF34B F1F36BC0 91D08586 86D48195 *2.3.13,.j.effMan*
81878584 D6829185 83A3C995 A27F5D00 *agedObjectIns").*

The position of the string where parsing stopped is delimited in the portion of the
original message byX'C0' and X'D0'. In this case, the character pointed out is “j” of
"jeffManagedObjectInstance." This label should instead be
"baseManagedObjectInstance."

MIB.ServiceAccept
The MIB.ServiceAccept message is sent to an application program from CMIP
services when the application program sends an unconfirmed CMIP request or a
CMIP response. Its purpose is to notify the application program that the request or
response was processed correctly.

Here is a sample MIB.ServiceAccept as received by an application program
including the APIhdr:

VTAM-Specific Requests and Responses

Chapter 10. VTAM-Specific Requests and Responses 141

02000100 00030011 00000001 00000001 *................*
2FAA54E5 00000000 00000000 00000001 *...V............*
A2998360 A3A89785 40F16B40 A2998340 *src-type 1, src *
81F16B40 94A28740 D4C9C24B E28599A5 *a1, msg MIB.Serv*
898385C1 83838597 A34D5D00 *iceAccept(). *

MIB.RegisterAccept
The MIB.RegisterAccept message is sent to an application program from CMIP
services when an object is successfully registered by that application program.

An object can be successfully registered even if one or more items in the
allomorphs list or create handler list cannot be processed. In this case, information
about allomorphs or create handler failures will be in the MIB.RegisterAccept
message.

Here is an example MIB.RegisterAccept as received by an application program
including the APIhdr:

01000000 00030018 **
00000003 00000001 2FAA7CF4 00000000 *..........@4....*
00000000 00010000 A2998360 A3A89785 *........src-type*
40F16B40 A2998340 81F16B40 94A28740 * 1, src a1, msg *
D4C9C24B D9858789 A2A38599 C1838385 *MIB.RegisterAcce*
97A34D95 819485C2 89958489 958740F1 *pt(nameBinding 1*
4BF34BF1 F84BF04B F04BF2F1 F7F26B40 *.3.18.0.0.2172, *
81939396 94969997 88A2C599 999699D3 *allomorphsErrorL*
89A2A340 4D5D6B40 83998581 A385C881 *ist (), createHa*
95849385 99C59999 9699D389 A2A34D5D *ndlerErrorList()*
5D00 *). *

VTAM-Specific Requests and Responses

142 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Chapter 11. Application-Program-to-Application-Program
Security

In VTAM CMIP services, there are two kinds of security:
v System-to-system security
v Application-program-to-application-program security.

System-to-system security is between two instances of CMIP services or between
CMIP services and itself. See z/OS Communications Server: SNA Network
Implementation Guide and z/OS Communications Server: SNA Resource Definition
Reference for more information about this type of security.

This chapter describes how to define application-program-to-application-program
security.

For any particular association, application-program-to-application-program security
and DES-based system-to-system security are mutually exclusive. If two application
programs decide to implement application-program-to-application-program security
and the CMIP Services for each application program has defined DES-based
security to be used between the two CMIP services, the association between the
two application programs fails. To establish a secure association between two
application programs on two instances of CMIP services, choose one of the
following methods:

v Use DES-based security for all associations between the two instances

v Use application-program-to-application-program security for all associations
between the two instances

v Register an application entity title for one or both application programs. Use
application-program-to-application-program security between the two application
entities. For a description of how to register an application entity title, refer to
“Registering an Application Entity” on page 135.

To use application-program-to-application-program security, you need to understand
the sequence of strings sent between each instance of CMIP services and the
application programs attempting to set up an association.

For syntax and details about the particular strings, refer to “Chapter 10.
VTAM-Specific Requests and Responses” on page 133.

If the two instances of CMIP services for the application programs have defined the
associationKey attribute associationKey '.' in the directory definition files, follow
the steps here to specify application-program-to-application-program security.

As you read the steps, refer to Figure 5 on page 144 for an illustration. The
numbers in the figure correspond to the steps.

The steps refer to an “origin application program” and a “target application
program”. The origin application program requests that the association be
established with the target application program. For example, the origin application
program might be a manager application program, and the target application
program might be an agent application program.

© Copyright IBM Corp. 1995, 2001 143

1. The origin application program decides to communicate with a target
application program. The origin application program issues an ACF.Associate
string to its CMIP services. The ACF.Associate string includes the securityInfo
attribute.

2. The origin application program checks the directory definition file. The directory
definition file indicates that the association is allowed to be established
between the two application programs. The file also indicates that the
securityInfo attribute must be passed to the target application program.

3. CMIP services sends the securityInfo value on the associate request to the
other CMIP services.

4. If the receiving CMIP services is not using DES-based security, that CMIP
services discovers the securityInfo value. CMIP services assumes that the
securityInfo information is tied to that particular association.

5. The CMIP services for the target application program sends a positive
response to the associate request.

6. The CMIP services for the origin application program checks the directory
definition file again, in case it has changed.

7. When the association between the two CMIP services has been established
successfully, CMIP services returns an association handle, which identifies to
the application program this particular association.

8. The origin application program subscribes to that association so that the origin
application program can be informed when the association ends.

So long as the CMIP services association stays intact, the partner at the other
end is the same on subsequent requests as it was on the initial request.

11

14

2 4

5

3

6

7

1 13

9

12

108

Figure 5. Application-Program-to-Application-Program Security

Application-to-Application Security

144 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

However, associations can be terminated independently of either the origin
application program or the target application program. For example, either of
the following could end an association:

v The limited resources function in VTAM that allows the selective termination
of idle LU 6.2 (APPC) sessions can end an association by terminating a
session that the association is using.

v CMIP services can end an association that has not been used.

For more information about the effects of the VTAM limited resources function
and the CMIP services automatic termination of associations, refer to “Starting
Associations” on page 136.

Because associations can be reused for associations between different
partners at a later time, the application programs on both ends of an
association need to be aware of the association status.

In this example, the origin application program initiates the association. If the
association goes down, the origin application program needs to initiate another
association and possibly reissue requests that are outstanding at the time the
prior association ended. (CMIP services for the origin application program
returns an error when requests are sent over an association that has ended.)

To be aware of association termination, the origin application program can
either issue an ACF.Subscribe string for that association or wait until an error
code is returned from the MIBSendCmipRequest or MIBSendRequest function.

9. The origin application program sends to the target application program a CMIP
request. The origin application program identifies the appropriate association
by using the association handle that was returned in step 7 on page 144.

CMIP services routes the request over only the designated association. This is
the first time that the target application program is aware of the existence of
the origin application program.

If CMIP services cannot route the request over that association, CMIP services
returns the string MIB.ServiceError (resultCode nnn) to the application
program, where nnn is the number of the error code.

For the names of each error code number, refer to the language header file,
ACYAPHDH, or “Appendix A. C Language Header File (ACYAPHDH)” on
page 231. For the names with descriptions of each error code number, refer to
“Appendix C. Error Codes Sent by CMIP Services” on page 265.

10. If this is the first CMIP request issued by the origin application program after
requesting the association, the target application program has no prior
knowledge of the particular association. The target application program
therefore issues the GetAssociationInfo string to CMIP services, specifying the
particular association handle.

11. CMIP services returns the requested information on the ACF.AssociationInfo
string and includes the securityInfo value that was obtained by the origin CMIP
services.

12. On every CMIP request, the target application program is required to verify
whether the requesting application program has authority to issue such a
request and to receive a valid response. In this example, the target application
program accesses a security function, such as Resource Access Control
Facility (RACF*).

13. As mentioned in step 8 on page 144, the application programs on both ends of
the association need to be aware of the association status. Therefore, the

Application-to-Application Security

Chapter 11. Application-Program-to-Application-Program Security 145

target application program should also issue the ACF.Subscribe string to its
CMIP services. If the target application program ever receives an
ACF.SubscribeMess string indicating that the association is no longer active,
the target application program should discard its knowledge of this association,
since this information is no longer valid.

14. The target application program responds to the CMIP request.

Note that most of these steps occur only when the association is being established.
Once the association is established, only steps 9, 12, and 14 are performed.

Application-to-Application Security

146 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Part 2. VTAM Topology Agent

© Copyright IBM Corp. 1995, 2001 147

148 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Chapter 12. Introduction to VTAM Topology Agent

In VTAM, CMIP services is made available by specifying the OSIMGMT=YES start
option. This start option gives you access to the following:
v VTAM topology agent
v CMIP services

The VTAM topology agent is a part of VTAM that functions as a CMIP application
program. It is designed to communicate through the application program interface
that is part of VTAM CMIP services with a network manager application program,
such as the NetView program. For information on the manager function, refer to
TME 10 NetView for OS/390 SNA Topology Manager and APPN Accounting
Manager Implementation Guide.

The information provided by the VTAM topology agent and CMIP services allows
users at a topology manager application program to monitor resource status and to
manage the network. The manager application program is installed, started, and
maintained separately from VTAM.

The basic function of the VTAM topology agent is to provide the capability for
monitoring the topology of a VTAM network. The VTAM topology agent provides this
capability by supplying the following topology information:
v Local topology
v Network topology
v LUs that VTAM owns
v LUs that are owned by another node but are known to this VTAM

The VTAM topology agent supplies the topology information by:
v Responding to requests for data
v Providing unsolicited data

The following sections give the details of the CMIP operations that the VTAM
topology agent supports and describe the data supplied by the topology agent for
those CMIP operations. “Chapter 13. OSI Object Classes and VTAM Resources” on
page 151 describes how the VTAM topology agent maps VTAM resources to OSI
objects.

“Chapter 14. OSI Operations” on page 161 discusses the OSI operations that are
performed on the objects, the CMIP responses and errors that the topology agent
provides, and the general resource monitoring process.

“Chapter 15. VTAM Topology Monitoring” on page 173 describes the specific
resource-monitoring operations. This chapter describes how to request the
monitoring and explains the data VTAM provides.

“Chapter 16. Requesting Specific Resource Data” on page 219 describes how the
VTAM topology agent gathers information about specific resources.

For reference, the following lists are included in the appendixes:

v “Appendix E. VTAM Topology Agent Object and Attribute Tables” on page 303
contains a list of all object classes supported by the VTAM topology agent, the
operations that are supported for each class, and a list of the supported
attributes for each object class.

© Copyright IBM Corp. 1995, 2001 149

v “Appendix F. VTAM Topology Agent Attributes Definition” on page 315 contains a
comprehensive list of all supported attributes, including a description of the
semantics of the attribute, the syntax of the attribute, and the uses of the
attribute.

Introduction to VTAM Topology Agent

150 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Chapter 13. OSI Object Classes and VTAM Resources

This chapter describes of the OSI object definitions supported by the VTAM
topology agent.

OSI Object Classes
The VTAM topology agent provides topology data for the network resources that
VTAM manages. To do this the VTAM resources must first be viewed in the
object-oriented context of the OSI object definitions. The following list shows the
OSI object classes supported by the VTAM topology agent:
v crossDomainResource
v crossDomainResourceManager (valid only in replies, not requests)
v definitionGroup
v appnEN
v interchangeNode
v lenNode
v logicalLink
v logicalUnit
v luCollection
v luGroup
v logicalUnitIndex
v migrationDataHost
v appnNN
v port
v appnRegisteredLu
v snaLocalTopo
v snaNetwork
v appnTransmissionGroup (valid only in replies, not requests)
v subareaTransmissionGroup (valid only in replies, not requests)
v t2-1Node
v t4Node
v t5Node
v virtualRoute (valid only in replies, not requests)
v virtualRoutingNode (valid only in replies, not requests)

Each object class definition contains a list of attributes for that class. The attributes
supported by VTAM are listed by object class in “Appendix E. VTAM Topology Agent
Object and Attribute Tables” on page 303. Only the object classes that are valid in
requests are listed.

Although some of the object classes have obvious meanings, some represent
resources in VTAM that are known by different names. The next sections address
the mapping of VTAM resources back to these OSI object classes. Note that some
of the OSI classes do not represent existing VTAM objects; these OSI objects
generally represent a group of VTAM resources. These object types are described
more fully in “Chapter 15. VTAM Topology Monitoring” on page 173.

© Copyright IBM Corp. 1995, 2001 151

Mapping VTAM Resources to OSI Object Classes
The resources that VTAM manages are known traditionally by a somewhat different
set of names than the OSI object classes. For the VTAM resources with different
names, the following table shows the mapping to the OSI classes:

Table 8. VTAM Resources Mapped to OSI Classes

VTAM Resource OSI Class

physical unit logicalLink

linkstation logicalLink

application logicalUnit

dependent LU logicalUnit

independent LU crossDomainResource

CDRSC crossDomainResource

CDRM crossDomainResourceManager

type 5 node t5Node

type 4 node (NCP) t4Node

type 2.1 node t2-1Node

APPN end node appnEN

APPN network node appnNN

interchange node interchangeNode

migration data host migrationDataHost

line port

channel port

appnRegisteredLu appnRegisteredLu

subarea TG subareaTransmissionGroup

APPN TG appnTransmissionGroup

major node definitionGroup

USERVAR luGroup

generic resource luGroup

Naming the Objects
Each instance of an object class is called an object instance. Because an object
instance consists only of attributes and behavior, there is not an object instance
name assigned to the instance. As in many object-oriented systems, one attribute is
assigned to contain a value that is used to name the object instance. This attribute
is called the naming attribute. Unlike some other systems, instance names in the
VTAM topology agent do not consist solely of the value of the naming attribute.
Instead, instances are identified by their distinguished names (DNs). The
distinguished name consists of a sequence of relative distinguished names
(RDNs), each of which contains an attribute value assertion (AVA).

Consider this example: we have a network, NETA, and a VTAM type 5 node,
SSCP1A, and a channel attached to SSCP1A called 0321-L. The channel is
considered a port object. It has a distinguished name that is composed of three
relative distinguished names. In Figure 6 on page 153, the leftmost name is the first

OSI Object Classes

152 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

relative distinguished name, the next name is the second, and the rightmost name
is the third.

The name of the port object in this example suggests a hierarchy. The leftmost
relative distinguished name is the highest level in the hierarchy, the network
identifier. The next name is lower in the hierarchy, the node name. And the
rightmost name is the lowest in the hierarchy, the resource name. This naming
convention is called name-containment.

The port object name must be unique within the domain of the SSCP. The name is
made unique among all SSCPs in the network by qualifying it with the SSCP name.
The name is made universally unique by qualifying it with the network ID as well,
assuming the network ID is unique.

VTAM-managed objects are named under VTAM, which is a snaNode object with
the naming attribute snaNodeName. VTAM is named under a netIDsubnetwork
object, with the naming attribute snaNetId. The distinguished names are actually a
sequence of naming attributes and their values, starting at the highest level object
and moving toward the lowest level object.

A summary of the distinguished names for the VTAM-managed objects is given in
Table 9.

Table 9. Object Names and Shorthand Distinguished Names

Object Name Shorthand Distinguished Names

t2-1Node snaNetID=netid; snaNodeName=CPname

lenNode snaNetID=netid; snaNodeName=CPname

appnNN snaNetID=netid; snaNodeName=CPname

appnEN snaNetID=netid; snaNodeName=CPname

virtualRoutingNode (See note 1.) snaNetID=netid; virtualRoutingNodeName=CPname (of the virtual routing
node)

interchangeNode snaNetID=netid; snaNodeName=CPname

migrationDataHost snaNetID=netid; snaNodeName=CPname

t5Node snaNetID=netid; snaNodeName=SSCPname

t4Node snaNetID=netid; snaNodeName=SSCPname; snaNodeName=NCPname

logicalUnit One of the following:

v snaNetID=netid; snaNodeName=CPname; luName=netid.LUname

v snaNetID=netid; snaNodeName=CPname; luName=LUname

crossDomainResourceManager (See
note 2.)

One of the following:

v snaNetID=netid; snaNodeName=CPname;
snaNodeName=netid.CDRMname

v snaNetID=netid; snaNodeName=CPname; snaNodeName=CDRMname

snaNetId=NETA ; snaNodeName=SSCP1A ; portId=0321-L
Where:
- snaNetId=NETA is the first relative distinguished name.
- snaNodeName=SSCP1A is the second relative distinguished name.
- portID=0321-L is the third relative distinguished name.

Figure 6. Distinguished Name Composed of Three Relative Distinguished Names

OSI Object Classes

Chapter 13. OSI Object Classes and VTAM Resources 153

Table 9. Object Names and Shorthand Distinguished Names (continued)

Object Name Shorthand Distinguished Names

crossDomainResource (See note 3.) One of the following:

v snaNetID=netid; snaNodeName=CPname;
nonLocalResourceName=netid.CDRSCname

v snaNetID=netid; snaNodeName=CPname;
nonLocalResourceName=CDRSCname

appnRegisteredLu One of the following:

v snaNetID=netid; snaNodeName=CPname;
nonLocalResourceName=netid.regLUname

v snaNetID=netid; snaNodeName=CPname;
nonLocalResourceName=regLUname

logicalUnitIndex One of the following:

v snaNetID=netid; snaNodeName=CPname;
logicalUnitIndexName=netid.LUname

v snaNetID=netid; snaNodeName=CPname; logicalUnitIndexName=LUname

luGroup snaNetID=netid; snaNodeName=CPname; luGroupName=USERVAR or
generic resource name

luCollection One of the following:

v snaNetID=netid; snaNodeName=CPname; luCollectionId=luCollection

v snaNetID=netid; snaNodeName=CPname; linkName=PUname;
luCollectionId=luCollection

port snaNetID=netid; snaNodeName=CPname; portId = LINEname

logicalLink One of the following:

v
snaNetID=netid; snaNodeName=CPname;
linkName=linkstation_name or PUname

v
snaNetID=netid; snaNodeName=CPname;
linkName=netid.linkstation_name or netid.PUname

virtualRoute snaNetID=netid; snaNodeName=CPname; virtualRouteId=
netid.originSubareaNumber.destSubareaNumber.virtualRouteNumber. transmissionPriority

appnTransmissionGroup snaNetID=netid; snaNodeName=CPname;
transmissionGroupId=TGN.partner_NETID.partner_CPNAME

subareaTransmissionGroup (See note
4.)

One of the following:

v snaNetID=netid; snaNodeName=CPname;
transmissionGroupId=local_subarea.TGN.partner_NETID.
partner_subarea.partner_node

v snaNetID=netid; snaNodeName=CPname; snaNodeName=NCPname;
transmissionGroupId=local_subarea.TGN.partner_NETID.
partner_subarea.partner_node

definitionGroup snaNetID=netid; snaNodeName=CPname;
definitionGroupName=mjnode_type.mjnode_name

snaNetwork snaNetID=netid; snaNodeName=CPname; graphid=(string "SnaNetwork")

snaLocalTopo snaNetID=netid; snaNodeName=CPname; graphid=(string
"SnaLocalTopology")

OSI Object Classes

154 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Notes for Object Names:

1. This object is identified by a role attribute, which is a pointer that consists of the
distinguished name of the object, but the object actually does not reside on the
local node.

2. A CDRM name is not required to match the real SSCP name of the type 5 node
it represents. CDRMs might be defined such that the network identifier is known
and unchangeable. Therefore, CDRM objects are named using the CDRM name
defined to VTAM. A CDRM with a predefined network identifier includes the
network identifier in the last RDN. A CDRM without a predefined network
identifier does not include the network identifier in the last RDN. The real name
and network identifier of the adjacent SSCP are available in the realSSCPname
attribute when the CDRM is active.

3. A CDRSC that represents a predefined alias does not include a network
identifier in the last RDN because the network identifier can change. A CDRSC
with a predefined network identifier includes the network identifier in the last
RDN. The CDRSC name used in this RDN is the name that was predefined for
the CDRSC. This name is not necessarily the same as the real name of the
resource that the CDRSC maps. The real name and network identifier of the
resource is provided in the cdrscRealLUname attribute of the
crossDomainResource object.

4. Partner_node name for subarea transmission groups can be formed from the
subarea number if the contacted subarea node does not provide its name in the
X'0E' control vector on contacted.

OSI Object States
Among the many attributes contained within the managed objects, some of the
most important attributes are the state attributes. The state attributes consist of the
six attributes defining the OSI states, as documented in the ISO/IEC 10164-2
standard, in addition to a seventh state, which represents the normal VTAM
resource status.

Each OSI state attribute is described in the following list:

v Operational state attribute

Indicates whether a resource is operational, according to the following values:

Enabled
The resource is partially or fully operational and available for use.

Disabled
The resource is not partially or fully operational and is not available for
use.

v Usage state attribute

Indicates whether a resource is in use, according to the following values:

Idle The resource is not in use.

Active The resource is in use and has sufficient spare operating capacity to
provide for additional users simultaneously.

Busy The resource is in use and it has no spare operating capacity to provide
for additional users at this instance.

v Administrative state attribute

Indicates whether a resource is allowed to perform functions. The administrative
state of a managed object is determined separately from the operational and
usage states. Administrative state can have the following values:

OSI Object Classes

Chapter 13. OSI Object Classes and VTAM Resources 155

Unlocked
The resource is permitted to perform services for its users.

Locked
The resource is prohibited from performing services for its users.

Shut down
Only existing instances are permitted to use the resource.

v Procedural status attribute

This attribute is supported by only those classes of managed objects that
represent some procedure (for example, a test process) that progresses through
a sequence of phases. The procedural status attribute can have the following
values:

Not initialized
Indicates that the resource must be initialized before it can perform
normal functions. The initialization procedure has not been started.

Initializing
Indicates that the resource must be initialized before it can perform
normal functions. The initialization procedure has been started, but is not
yet complete.

Terminating
Indicates that this resource is in a termination phase.

v Availability status attribute

Offline
Indicates that the resource requires a routine operation to place it online
and make it available for use.

Intest Indicates the resource is undergoing a test procedure.

Degraded
Indicates overuse of cycles or buffers.

Dependency
Indicates that a higher-level resource is in a state of transition, either up
or down. For related information on dependency, refer to
“ACTION(snapshot) Update Merging” on page 170.

Failed Indicates that a resource is inoperative.

v Unknown status attribute

Indicates that the state of the resource represented by the managed object is
unknown. When the unknown status attribute value is true, the value of the state
attribute cannot reflect the actual state of the resource.

v Native status attribute

Indicates the VTAM internal state of the resource.

Mapping VTAM Status to OSI States
The topology agent maps the existing status of VTAM resources to OSI states when
the topology agent reports object data. For traditional subarea resources, the
mapping is straightforward; however, for some APPN resources, a VTAM status
does not exist.

Table 10 on page 157 shows how VTAM resource status is mapped to OSI states.
Table 11 on page 159 shows the valid combinations of OSI states for the resources
with no applicable VTAM status.

OSI Object Classes

156 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

OSI States for VTAM Resources with VTAM Status
In Table 10, to find the OSI state for a VTAM resource with a particular VTAM
status, find the status in the first column. Follow the row across until it intersects
with the column for your VTAM resource. The abbreviation in that cell of the table
indicates the OSI state that is assigned. Look up that abbreviation in the list of
abbreviations at the end of the table.

Table 10. VTAM Resource Status to OSI States

VTAM
Resource
Status

Native
Status NCP CDRM

LU and
CDRSC

Type 2 PU
and Type 2.1
PU

Link
Station Line

VTAM
Agent
Host

ACT ACT uea uea uei uea uea uea uea

ACT/S ACT/S N/A N/A uea N/A N/A N/A N/A

INACT INACT udi udi udi udi udi udi N/A

INACTIVE
(INOP) (See
note 1)

INACTIVE udi-fl udi-fl udi-fl
(for LUs)

udi
(for CDRSCs)

udi-fl udi-fl udi-fl N/A

INACTIVE
(NEVAC)

NEVAC udi-ni udi-ni udi-ni udi-ni udi-ni udi-ni N/A

PND-ACT PND-ACT udi-in udi-in udi-in udi-in udi-in udi-in N/A

PND-INACT PND-INACT uea-tm uea-tm uea-tm uea-tm uea-tm uea-tm N/A

CONNECT-
ABLE

CONNECT-
ABLE

N/A N/A uei-ol
(Switched
resources
only)

uei-ol
(Switched
resources
only)

N/A N/A N/A

ROUTABLE ROUTABLE N/A N/A uei-it uei-it N/A N/A N/A

ROUTABLE
(released)

ROUTABLE N/A N/A uei-it-ol uei-it-ol N/A N/A N/A

ACTIVE
(congested)

ACTIVE ueb N/A N/A ueb N/A N/A N/A

ACT DISABLE N/A N/A uei-po N/A N/A N/A N/A

INACTIVE
(released)

RELEASED udi-ol N/A udi-ol udi-ol udi-ol udi-ol N/A

INACTIVE
(reset)

RESET udi-unkwn udi-unkwn udi-unkwn udi-unkwn udi-unkwn udi-unkwn N/A

PND-INACT
(reset)

PND-INACT uea-tm-
unkwn

uea-tm-
unkwn

uea-tm-
unkwn

uea-tm-
unkwn

uea-tm-
unkwn

uea-tm-
unkwn

N/A

:

The OSI states and statuses are from the ISO/IEC 10164-2 standard. The states
are listed in the following order:
v Administrative state (administrativeState)
v Operational state (operationalState)
v Usage state (usageState).

For a description of the states, refer to “OSI Object States” on page 155.

OSI Object Classes

Chapter 13. OSI Object Classes and VTAM Resources 157

OSI Status
Description

uea Unlocked Enabled Active
ueb Unlocked Enabled Busy
uei Unlocked Enabled Idle
udi Unlocked Disabled Idle
-tm proceduralStatus = terminating
-ol availabilityStatus = offline
-fl availabilityStatus = failed
-it availabilityStatus = in test
-po availabilityStatus = power off
-in proceduralStatus = initializing
-ni proceduralStatus = not initialized
-unkwn

unknownStatus = unknown
N/A Not Applicable

Footnotes for the Table Entries:

1. A resource is considered INOP when the VTAM display of the resource shows
INOP. In most cases, the internal VTAM status of an INOP resource is
INACTIVE. However, it is possible to have other status values also showing
INOP. Therefore, the availabilityStatus value failed might appear with
nativeStatus values other than INACTIVE.

2. An additional value of dependency might be added to the availabilityStatus
attribute if a higher-level resouce is in transition.

3. NCP slow down indication always forces usage state=busy.

OSI States for VTAM Resources without VTAM Native Status
For information about the status of APPN network nodes and transmission groups,
refer to Table 11 on page 159. Note that the nativeStatus attribute does not apply to
these resources.

OSI Object Classes

158 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Table 11. OSI States for VTAM Resources without Native Status

VTAM Resource OSI State

appnTG uea
uea-tm
udi
udi-ol

networkNode or interchange node (As
reported in snaNetwork APPN network
topology.)

uea
uea-tm
ueb
ueb-tm
uea-dg
ueb-dg
udi-ol

Description of the OSI Resource Statuses:

The OSI states and statuses are from the ISO/IEC 10164-2 standard. The states are listed
in the following order:
v Administrative state (administrativeState)
v Operational state (operationalState)
v Usage state (usageState).

For a description of the states, refer to “OSI Object States” on page 155.

OSI Status
Description

uea Unlocked Enabled Active
ueb Unlocked Enabled Idle
udi Unlocked Disabled Idle
-dg availabilityStatus = degraded
-tm proceduralStatus = terminating
-ol APPN garbage collection indicator

OSI Object Classes

Chapter 13. OSI Object Classes and VTAM Resources 159

OSI Object Classes

160 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Chapter 14. OSI Operations

This chapter describes the OSI operations that are performed on the objects that
were described under “Chapter 13. OSI Object Classes and VTAM Resources” on
page 151. The following topics are included:

v Introduction to the CMIP verbs that are used to specify the operations and
overview of the VTAM topology agent processing of the operations

v Overview of types of responses the VTAM topology agent provides to an input
CMIP request

v High-level description of the resource-monitoring process using an
ACTION(snapshot) operation.

The details of the specific monitoring capabilities of the VTAM topology agent are
provided under “Chapter 15. VTAM Topology Monitoring” on page 173.

Specifying OSI Operations with CMIP Verbs
The set of OSI operations, specified by CMIP verbs, is used to collect topology data
about VTAM resources represented as object instances.

Not all object classes are supported for all operations; in some cases, object
classes are supported only for response data and not for request data.

Performing an operation on an object instance usually involves a manager
application program sending a CMIP request message (ROIV) to the object. The
message contains an indication of the type of operation being requested, as well as
other data related to the requested operation. The VTAM topology agent receives
the request message, performs the requested operation, and generates and sends
a CMIP response message to the manager application program. This sequence is
altered slightly when objects send unsolicited messages or requests that provide
information about an event that has occurred.

A given operation is either confirmed or unconfirmed. A confirmed operation is
one that requires that a response be returned to the application program that issued
the request. An unconfirmed operation is one for which there can be no response.

The following operations, supported by the VTAM topology agent, are described in
more detail in the following sections:
v GET
v CANCEL-GET
v ACTION
v EVENT-REPORT
v SET
v DELETE
v Other operations.

GET
GET is a confirmed request that is issued by a manager application program. The
request is directed to an object instance, requesting the return of attribute data for
that object instance. The GET response contains the requested attribute data.

© Copyright IBM Corp. 1995, 2001 161

CANCEL-GET
CANCEL-GET is a confirmed request that is issued by a manager application
program. The function of this operation is to terminate the processing of a GET
request previously issued by this manager application program. The CANCEL-GET
response message contains only an indication of whether the GET request was
successfully terminated.

ACTION
The ACTION operation has two types: confirmed and unconfirmed. The types are
usually specified as:
v ACTION, which is unconfirmed
v ACTION-CONFIRMED, which is confirmed.

This discussion refers only to ACTION-CONFIRMED. ACTION is a multi-function
operation. The ACTION request is requesting the target object to do one of a set of
possible functions. The particular function being requested is specified by the
detailed actionType data contained in the request. The VTAM topology agent
supports only one type of action, ACTION(snapshot). The ACTION(snapshot).
operation is a request directed to one of a set of special objects, requesting the
return of a set of topology data. The type and amount of data returned varies,
depending upon the class of object that is the target of the request.

SET
The SET operation has both confirmed and unconfirmed types. The SET request is
directed to an object instance, requesting that specified attributes for that object be
set to values provided in the SET request. The VTAM topology agent does not
support the setting of VTAM resource data by using the CMIP SET operation.
However, the VTAM topology agent does respond to any confirmed SET request it
receives. For a discussion of error responses, refer to “Responding to CMIP
Requests” on page 163.

DELETE
DELETE is a confirmed operation directed to an object instance. The intended
function of the DELETE operation is to request that an object instance be deleted.
The DELETE response contains an indication of whether the object was actually
deleted. The VTAM topology agent does not support the deletion of VTAM
resources by using the CMIP DELETE operation. However, the VTAM topology
agent does respond to any DELETE request it receives. (See error discussion,
“Responding to CMIP Requests” on page 163.)

Other Operations
Examples of other OSI operations include create, linked-reply, and other types of
ACTION. Although the create and linked-reply operations are valid, there is no
situation in which the VTAM topology agent can receive these operations. Other
types of ACTIONs can be received by the VTAM topology agent.

The create request is used to create a new instance of a specified object class. For
CMIP services to route a create request, an application program must have
registered as a create-handler for the requested object class. The VTAM topology
agent does not register as a create-handler for any object class, so CMIP services
never routes a create request to the topology agent.

OSI Operations

162 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

The linked-reply operation is a request, but it is better described as part of a
multiple-message reply. The responses for some requests might require multiple
messages. All of the messages except the last message of a multiple message
reply are linked-reply operations. A linked-reply message must refer to the original
request message for which this message is part of the reply. The VTAM topology
agent does not send any requests for which a linked-reply is returned, so the
topology agent never receives linked-reply operations. The VTAM topology agent
does, however, send linked-reply messages.

As mentioned before, there are a number of action types for the ACTION operation
other than snapshot. The VTAM topology agent does not support the other action
types, but the topology agent responds to any confirmed ACTION request it
receives. For a discussion of errors, refer to “Responding to CMIP Requests”.

Responding to CMIP Requests
This section provides an overview of the types of responses, both positive and
negative, that the VTAM topology agent provides, given an input CMIP request.
Subsequent sections describe the details of monitoring VTAM resources by using
the CMIP requests.

A CMIP request message is really a form of a protocol data unit (PDU), as are the
various kinds of response messages. The following list provides a summary of the
types of PDUs used by the VTAM topology agent:

ROIVapdu
The ROIV message represents a request message and is usually an
unsolicited message. In one case, an ROIV represents one of a set of
linked-reply messages, but even in this case the ROIV is treated as a
request message. The ROIV request messages are either confirmed
(requiring a response) or unconfirmed (allowing no response), depending on
the particular operation being requested. The linked-reply ROIV message
might contain the requested response data, or it might contain an indication
that an error has occurred. All requests that are sent to the VTAM topology
agent are ROIV messages.

RORSapdu
The RORS message represents a final response message. It is sent only in
response to a previous ROIV request message and only if the ROIV
request requires a response message. An ROIV request message can have
a maximum of one RORS message sent in response. Therefore, if a
request requires multiple reply messages, all but the final reply messages
must be in the form of ROIV linked-reply messages. The VTAM topology
agent sends RORS messages in response to all confirmed requests that it
receives, when the subsequent processing is successful. An RORS
message is also sent if an error occurred and the error indication was sent
as part of a linked-reply ROIV message.

ROERapdu
The ROER message represents a negative response message. It is used to
indicate the unsuccessful processing for a request message. For the ROER
message to be used for a response, it must be the only message in the
response. Therefore, if one or more linked-reply ROIV messages are sent in
a response and then an error occurs, the ROER message cannot be used
to indicate the processing error. Instead, the error is indicated in an
additional linked-reply ROIV, followed by an RORS.

OSI Operations

Chapter 14. OSI Operations 163

Responding to GET ROIV Messages
The VTAM topology agent can receive a GET ROIV request for any VTAM
resource, regardless of whether the resource exists. Whether the resource is valid
or not, all GET requests are valid, and the agent always responds with either a
single positive response (RORS) or a single negative response (ROER).

Responding to CANCEL-GET Messages
The CANCEL-GET ROIV request, by virtue of being sent to the VTAM topology
agent from CMIP services, must refer to an existing, valid GET request. Two
responses are generated, an ROER for the GET request that is referred to,
indicating that the operation was cancelled, and an RORS for the CANCEL-GET
request indicating that this operation was completed successfully. If the
CANCEL-GET request is issued after the VTAM topology agent has processed the
GET request, then the response to the CANCEL-GET request is an ROER,
indicating that this operation could not be processed.

Responding to ACTION ROIV Messages
An ACTION ROIV request can be valid or not valid. The VTAM topology agent
responds to ACTION requests that are not valid with a single negative response
(ROER). Valid ACTION requests are processed, but errors can still occur during
that processing. The VTAM topology agent can respond to valid ACTION requests
with either positive or negative responses. These responses, however, may not be
simple single messages; instead, they may involve a series of messages.

A typical positive response to an ACTION is a number of linked-reply ROIV
messages followed by a single ACTION response message (RORS). A negative
response to an ACTION request can be more complicated; the negative response
may take the form of the ROER, or it can be a linked-reply ROIV message that
contains specificErrorInfo data, followed by an RORS message.

The determination of which type of error response is used is dependent upon
whether any linked-reply ROIV messages with data have been sent. If no
linked-reply messages with data have been sent in response, an ROER is used for
the error response. If one or more linked-reply messages have been sent in
response to this ACTION request, then a linked-reply ROIV containing the
specificErrorInfo construct is sent, followed by an RORS response message.

EVENT-REPORT, SET, and DELETE Messages
EVENT-REPORT messages are always sent as unconfirmed ROIV messages;
these ROIVs do not represent linked-replies, and it is not possible to include any
error information in them.

A SET ROIV request sent to the VTAM topology agent will result in either an ROER
or an RORS message, depending on the specific data in the request.

A DELETE ROIV request sent to the VTAM topology agent will always result in an
ROER response message.

OSI Operations

164 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Monitoring Resources with the ACTION(snapshot) Operation
The ACTION(snapshot) operation can be used to collect current resource
information and to monitor future resource change information. This section
describes the general use of ACTION(snapshot) for resource monitoring.
“Chapter 15. VTAM Topology Monitoring” on page 173 provides the details of using
ACTION(snapshot) to monitor specific kinds of VTAM resource data.

ACTION(snapshot) Request
Similar to other operations, the ACTION(snapshot) request is sent to an object
instance. It differs from other operations in that the number of object classes that
support the ACTION(snapshot) operation is small. The classes that do support
ACTION(snapshot) represent collections of objects.

The following object classes support the ACTION(snapshot):

Object Class
Description

snaLocalTopo
Represents the graph object that contains all of the resources owned by a
local VTAM. An ACTION request to this object is asking for the following
data:
v Local VTAM data
v Lines
v PUs
v Link stations
v Owned NCP data
v Contacted adjacent node data
v APPN and subarea TGs.

snaNetwork
Represents the graph object that contains all of the network information
known at a VTAM node.

luCollection
Represents the collection object that contains all of the LU information
associated with a specific PU or the VTAM host.

logicalUnitIndex
Represents the collection object that contains the instances of a given LU
name known at a VTAM node or throughout the network. Note that an
ACTION on the logicalUnitIndex object is not considered a monitoring
function. It more closely resembles the function of the GET operation and is
discussed in detail with the GET operation instead of with the various
ACTION monitors.

In addition to the object class and object instance, the ACTION request includes a
segment called the actionInfoArg. This segment is a sequence of three possible
fields, of which any specific ACTION request can include a maximum of two of the
following fields:

start
Indicates that the ACTION request is to start a new snapshot operation. If this
field is present in the request, an additional token of information is included in
this field that is one of the following:

OSI Operations

Chapter 14. OSI Operations 165

oneTimeOnly
Indicates that the snapshot is requesting only initial data, that is, the
monitoring of future changes to resource data is not being requested.

ongoing
Indicates that both initial data and update data are being requested; this
includes the current resource information and future changes to this data.

stop
Indicates that the ACTION request is to stop a previous start ACTION request.
The start and stop fields are mutually exclusive; however, one of these two
fields must appear in a valid ACTION(snapshot) request. If the stop field is
present, an additional mandatory token is included after the stop token that
provides the invoke identifier of the start request that is to be terminated.

additional info (addlInfo)
Optionally specifies data that is specific to the target object. For example, both
snapshots for snaLocalTopo and snaNetwork might contain the
appnPlusSubareaParm parameter, which has an information value representing
either appnOnly or appnPlusSubarea. This field applies only if the start field is
included.

ACTION(snapshot) Response
ACTION(snapshot) responses can be any of the following variations on PDU
content:

v Single RORS

If there is no snapshot data for the VTAM topology agent to supply and the
request is oneTimeOnly, the empty set might be returned in RORS message.

v Linked-reply and RORS

If the VTAM topology agent has snapshot data to provide, the response consists
of one or more linked-reply ROIV messages followed by an RORS message.

v Single ROER

If an error occurs and no data linked-reply ROIV messages are sent in response,
a single ROER message is sent in response, indicating the failure to process
successfully.

v Linked-reply error and RORS

If one or more linked-reply ROIV messages with data is sent in response before
an error occurs, an ROER message cannot be used. In this case, an additional
linked-reply ROIV is sent containing an indication of the error, followed by an
RORS message.

In a snapshot response message containing valid data, the basic unit of information
is a sequence of:
v vertex 1 (v1)
v vertex 2 (v2)
v endpoint 1 (e1)

Multiple sets of this sequence (v1, v2, e1) can occur within a snapshot response.
Each of the three components (v1, v2, e1) has the same basic syntactic structure.
However, the semantics and the actual structure of v1, v2, and e1 vary with the
different target objects of the snapshot.

The structure of each v1, v2, or e1 is as follows:

object Provides the distinguished name (DN) of the primary object instance being

OSI Operations

166 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

reported in this component. If this component is vertex 1 or endpoint 1,
additional object instances might be reported elsewhere in the v1 or e1
string.

class Provides the object class of the instance identified in the object field.

states Provides a condensed, encoded form of the state attributes for the object
instance identified in the object field. The attributes are given in the OCTET
string form instead of the full attribute form. The state attributes, their
positions in the OCTET string, and the possible values are:

Octet State

0 operationalState
00 disabled
01 enabled
FF N/A or unchanged

1 usageState
00 idle
01 active
02 busy
FF N/A or unchanged

2 administrativeState
00 locked
01 unlocked
02 shuttingDown
FF N/A or unchanged

3 availabilityStatus

Note that this attribute represents a SET, so it might have multiple
values; each value shown below represents a bit position. To show
multiple values, the bits representing the values are logically ORed
together.
00 noStatus
01 notInstalled
02 degraded
04 dependency
08 offDuty
10 offLine
20 powerOff
40 failed
80 inTest
FF N/A or unchanged

4 proceduralStatus
00 no status
08 terminating
10 reporting
20 initializing
40 not initialized
80 initialization required
FF N/A or unchanged

5 unknownStatus
00 false
01 true
FF N/A or unchanged

OSI Operations

Chapter 14. OSI Operations 167

6 nativeStatus
00 Active
01 Active with sessions
02 Inactive
03 Never active
04 pending active
05 pending inactive
06 Connectable
07 Routable
09 Congested
0A Released
0B Reset
0C Inop
FF N/A or unchanged

info Provides an optional set of attributes associated with the object instance
identified in the object field. The list of attributes provided varies with the
target snapshot object.

moreInfo
Provides for any additional information that is necessary; for example, for
the vertex 1 of a snaLocalTopo snapshot this field might contain a set of
object data specifying a port object.

reason
Indicates why the snapshot update is being sent:

Value Description

deleted
Object is deleted.

addOrUpdate
Object is added or changed. The default is addOrUpdate.

ACTION(snapshot) Initial Data
The response data that is common to both an ongoing and a oneTimeOnly snapshot
is called initial data. The initial data provides the immediate view or snapshot of
the current resource data. For a oneTimeOnly snapshot, the initial data is the entire
set of data returned to the manager application program. For an ongoing snapshot,
the initial data is returned first, followed later by update data.

Initial data is returned in linked-reply ROIV messages, with the number of
messages varying according to snapshot type and configuration. The minimum
number of linked-replies is one; there is no maximum number.

When all initial data linked-replies have been sent, the VTAM topology agent must
notify the manager application program that the initial data is complete. The VTAM
topology agent provides two ways for a manager application program to determine
that initial data is complete:

v If the snapshot is ongoing, after all linked-replies with initial data are sent, the
VTAM topology agent sends one additional linked-reply message with no
snapshot data in it, called the empty set linked-reply. The purpose of this
message is to indicate that the transfer of initial data is now complete. This
special linked-reply is identified by the value of the actionReplyInfo field being ().
All (v1,v2,e1) data is reported in the actionReplyInfo section of the snapshot
response, so the absence of data in this field indicates no more initial data.

OSI Operations

168 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

v If the snapshot is oneTimeOnly, following the linked-replies of initial data, an
empty set linked-reply is sent to indicate initial data transfer is complete. Next, an
RORS message is sent to indicate that processing for the entire request is
complete.

ACTION(snapshot) Update Data
Snapshot updates consist of:

v Changes to resource information that was previously reported in initial data

v Resource information not reported in initial data that is newly defined or learned
by VTAM.

Update data is reported only for ongoing snapshots. It is never reported for
oneTimeOnly snapshots. Other than being reported later than initial data, following
the empty set linked-reply, there is little difference between initial data and update
data. The syntax is the same, but the VTAM topology agent generally provides less
data in the update data than in the initial data.

The update data is reported in linked-replies that might contain multiple sets of (v1,
v2, e1) data. When a topology update occurs, an update is generated and
formatted into a response string. However, the VTAM topology agent does not
immediately send every update string to the manager application program. Instead,
the VTAM topology agent attempts to use storage efficiently by filling the snapshot
buffer. The VTAM topology agent might wait a short period of time to see if more
update data is generated. If more updates are generated, the updates are added to
the existing snapshot response. If no updates occur within the time interval (1
second), the existing snapshot response is sent to the manager application
program.

Update data is generated by the VTAM topology agent for these reasons:

v An object is created.

A resource that is within the scope of a given snapshot becomes known to VTAM
and there is an ongoing snapshot in the update phase. The creation of the object
is reported as update data.

v An object is deleted.

A resource previously reported within a given snapshot is no longer known to
VTAM. The resource might be deleted because a major node was inactivated or
a connection was removed. This change is reported as an object deletion in
update data.

v An object changes state.

A resource previously reported within a given snapshot has changed state. It is
important to note that the state that has changed is the VTAM internal state; this
state is mapped to the set of state attributes that are reported for the object.
Since several VTAM internal states are mapped to the same set of state attribute
values, there is no guarantee that any of the seven state attributes changed,
although it is likely.

Although VTAM in general does not report updates when attribute values change,
there are exceptions. In cases where significant data associated with a reported
resource has changed, updates are sent to report new attribute values, even if the
state of the resource does not change.

OSI Operations

Chapter 14. OSI Operations 169

ACTION(snapshot) Update Merging
As noted previously, one of the reasons for reporting topology update data is
resource state changes. Of the state changes that occur for resources, many of the
resulting states are transient in nature. That is, the resource is in transition from one
state to another, but the transition is through a series of intermediate states. These
intermediate states are usually brief and are considered less important than the
resting states.

Since the number of updates reporting transient state changes can be large, the
VTAM topology agent suppresses the intermediate updates. This process is called
merging, since the intermediate updates are merged instead of discarded.

Updates that can be merged are:
v snaLocalTopo
v snaNetwork, for CDRMs only
v luCollection (with some exceptions).

luCollection updates for independent LUs in a snapshot directed at a specific PU
are not merged. snaNetwork updates for APPN network data are not merged.

Updates for resources moving to transient states are merged until an update is
received that shows the resource moving to a resting state. The resting state
update is merged, and the final, merged update is sent.

It is possible for resources to stay in transient states too long; for example, when an
error occurs and a resource is hung in a state that is not a resting state. The VTAM
topology agent periodically looks for updates that have been held too long; when
these are found, they are sent.

The UPDDELAY start option controls the maximum length of time that VTAM waits
before looking for resource updates that have been in transient states too long. This
start option specifies the maximum number of seconds to wait before looking for
resources that are hung. Note that decreasing the value for UPDDELAY might force
VTAM to look for these resources more often, but does not necessarily imply that
resources are reported any faster. The time specified in the UPDDELAY start option
does not affect the computing of whether a resource has stayed in a transient state
too long. That computing is not controllable and is based primarily on recent
updates statistics.

Although a given type of snapshot update is eligible to be merged, in some cases,
individual updates are not merged.

EVENT-REPORT data is also subject to the merge process.

By design, the merge process suppresses intermediate state data; however, there is
one case where the loss of intermediate state data is not acceptable. The
availabilityStatus attribute reports the value of dependency when a higher-level
resource is in transition. When updates are merged, the newest state data generally
replaces the older state data, but for the dependency information this is not the
case. The VTAM topology agent preserves the dependency information from all
updates that are merged to a single update by performing the logical OR operation
on the dependency information from all updates. The result is that if any of the set
of merged updates have the dependency flag set for a resource, the reported
(merged) update reports the dependency in the availabilityStatus attribute.

OSI Operations

170 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

ACTION(snapshot) Termination
If the start request for the ACTION(snapshot) is for a oneTimeOnly snapshot, then it
is not necessary to issue a stop request. The oneTimeOnly snapshot stops itself
when the initial data transfer is complete. The ongoing snapshots, however, must be
explicitly stopped by using an additional ACTION(snapshot) request that specifies
stop instead of start. The stop request must indicate which snapshot request should
be terminated by including the invoke identifier of the start snapshot request.

Upon receiving a stop ACTION(snapshot) request, the VTAM topology agent
suspends the reporting of update data, responds to both the start request and the
stop request, and terminates processing for both requests. Note that the stop
request is not processed until the transfer of the initial data for the target snapshot
is complete.

OSI Operations

Chapter 14. OSI Operations 171

172 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Chapter 15. VTAM Topology Monitoring

This chapter describes the details of the specific monitoring capabilities of the
VTAM topology agent. The following topics are included:
v Requesting and monitoring network data (snaNetwork)
v Requesting and monitoring local topology (snaLocalTopo)
v Requesting and monitoring LU data (luCollection)
v Monitoring resources through event reports

Requesting and Monitoring Network Data (snaNetwork)
This section contains the following topics:
v “Overview”
v “Action Request”
v “Initial Data Response” on page 174
v “Update Data Response” on page 174
v “Action Termination” on page 175
v “snaNetwork Snapshot Data (APPN Data)” on page 176
v “snaNetwork Snapshot Data (Subarea Data)” on page 177
v “snaNetwork Snapshot Example” on page 179

Overview
This section describes the action that is used to request monitoring and stop
monitoring network data for the snaNetwork managed object class.

Management of the network requires that a manager application program be able to
request the names of all nodes and APPN transmission groups and virtual routes
that connect any two nodes and to be able to monitor their status.

Operations against snaNetwork can be directed at the following VTAM topology
agent host node types:
v Interchange node
v Network node
v Migration data host
v Pure type 5 node.

Note: Pure end nodes cannot provide snaNetwork data and fail the request with an
ROER response.

Action Request
A snapshot action request is used to request network data from the VTAM topology
agent. The action is sent as an m-Action-Confirmed operation.

The manager application program can request that any future updates to the
snaNetwork snapshot object to be returned, as they occur by specifying ongoing in
the request. The network data can be requested without updates by specifying the
oneTimeOnly value in the request.

The manager application program can specify the appnPlusSubareaParm in the
additional information field. The value, either 0 or 1, represents either appnOnly (0),
which means to request APPN network data, or appnPlusSubarea (1), which means
to request both APPN and subarea network data. The default value is appnOnly if
the appnPlusSubareaParm is not specified.

© Copyright IBM Corp. 1995, 2001 173

The target resource is the only object instance of the snaNetwork object class at
the VTAM topology agent. Following is the example of an ongoing, appnPlusSubarea
snaNetwork snapshot request:

msg CMIP-1.ROIVapdu (invokeID 196610, opera
tion-value 7, argument (baseManagedObjectClass 1.3.18.0.0.21
51,baseManagedObjectInstance (distinguishedName (RelativeDis
tinguishedName (AttributeValueAssertion (attributeType 1.3.1
8.0.2.4.6, atributeValue NETA)), RelativeDistinguishedName (
AttributeValueAssertion (attributeType 1.3.18.0.0.2032, attr
ibuteValue SSCP1A)), RelativeDistinguishedName (AttributeVal
ueAssertion (attributeType 1.3.18.0.0.2216, attributeValue (
string "SnaNetwork"))))),actionInfo (actionType 1.3.18.0.0.2
222,actionInfoArg (start ongoing, addlInfo ((identifier 1.3.
18.0.0.2164, significance TRUE, information 1))))))

Initial Data Response
The interchange node or network node provides the APPN network data that is
current at the time the operation is processed. The APPN network data includes
information about network nodes, interchange nodes, border nodes, virtual routing
nodes, and transmission groups (TGs) that connect the APPN nodes. A connection
between nodes A and B is reported once for each direction: from Node A to Node B
and from Node B to Node A.

The migration data host nodes, type 5 nodes and interchange nodes provide the
subarea network data that is current at the time the operation is processed. The
subarea network data includes information about the local VTAM agent host,
cross-domain resource managers, and virtual routes that connect the subarea
nodes.

Interchange nodes are the only nodes that provide both APPN and subarea data.

If the oneTimeOnly snapshot action is requested, the initial data is returned in action
linked-replies. To indicate that the initial data for the entire set of network data has
been returned, the VTAM topology agent sends an additional ROIV action
linked-reply that is an empty set linked-reply. Following the empty set is an RORS
message.

If the ongoing snapshot action is requested, all the initial data is returned in action
linked-replies, just as for the oneTimeOnly snapshot action and is followed by an
empty-set linked-reply. The VTAM topology agent is then ready to process updates
for the snaNetwork object.

Update Data Response
When the ongoing snapshot action has been issued and is currently in effect, the
following changes cause updates to the snaNetwork object, which result in the
sending of a snaNetwork snapshot linked-reply:
v Any status changes for a node or APPN transmission group (TG)
v Changes in the characteristics of a node or APPN TG
v Creation, deletion, or state change of a cross-domain resource manager

Updates for the snaNetwork object for subarea network data might be merged with
related updates by the VTAM topology agent before being written to the snapshot
linked-replies.

snaNetwork

174 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Action Termination
The VTAM topology agent terminates an ongoing snaNetwork snapshot action
under the following conditions :

v A stop snapshot action request is received.

v An error occurs during snapshot processing in VTAM.

v The association between the local CMIP services and the manager application
program’s CMIP services terminates.

The following is an example of a valid stop snapshot action request :
msg CMIP-1.ROIVapdu (invokeID 196612,

operation-value 7, argument (baseManagedObjectCl
ass 1.3.18.0.0.2151, baseManagedObjectInstance (d
istinguishedName (RelativeDistinguishedName (Attr
ibuteValueAssertion (attributeType 1.3.18.0.2.4.6
, attributeValue "NETA")), RelativeDistinguishedN
ame (AttributeValueAssertion (attributeType 1.3.1
8.0.0.2032, attributeValue "SSCP1A")), RelativeDi
stinguishedName (AttributeValueAssertion (attribu
teType 1.3.18.0.0.2216, attributeValue (string "S
naNetwork"))))), actionInfo (actionType 1.3.18.0.
0.2222, actionInfoArg (stop 196610))))

The stop request in the previous example looks much like the associated start
request except for the actionInfoArg portion of the request. For the stop request
the stop keyword is used along with the invoke identifier of the start request that is
to be terminated.

The result of the VTAM topology agent’s processing of a stop request is three
messages :
v An empty-set linked-reply for the start request
v An RORS response to the start request
v An RORS response to the stop request

The following shows examples of these three messages :

First, the empty-set linked reply:

(Note that the associated invoke identifier in a linked-reply is given in the linked-ID
field.)

msg CMIP-1.ROIVapdu (invokeID
1, linked-ID 196610, operation-value 2, argument
(actionResult (managedObjectClass 1.3.18.0.0.215
1, managedObjectInstance (distinguishedName (Rela
tiveDistinguishedName (AttributeValueAssertion (a
ttributeType 1.3.18.0.2.4.6, attributeValue "NETA
")), RelativeDistinguishedName (AttributeValueAss
ertion (attributeType 1.3.18.0.0.2032, attributeV
alue "SSCP1A")), RelativeDistinguishedName (Attri
buteValueAssertion (attributeType 1.3.18.0.0.2216
, attributeValue (string "SnaNetwork"))))), actio
nReply (actionType 1.3.18.0.0.2222, actionReplyIn
fo ()))))

Next, the RORS for the start request :
msg CMIP-1.RORSapdu (invokeID

196610)

Finally, the RORS for the stop request:

snaNetwork

Chapter 15. VTAM Topology Monitoring 175

msg CMIP-1.RORSapdu (invokeID
196612, resultOption (operation-value 7, result
(managedObjectClass 1.3.18.0.0.2151, managedObjec
tInstance (distinguishedName (RelativeDistinguish
edName (AttributeValueAssertion (attributeType 1.
3.18.0.2.4.6, attributeValue "NETA")), RelativeDi
stinguishedName (AttributeValueAssertion (attribu
teType 1.3.18.0.0.2032, attributeValue "SSCP1A"))
, RelativeDistinguishedName (AttributeValueAssert
ion (attributeType 1.3.18.0.0.2216, attributeValu
e (string "SnaNetwork"))))), actionReply (actionT
ype 1.3.18.0.0.2222, actionReplyInfo ()))))

snaNetwork Snapshot Data (APPN Data)
For APPN network topology data, the linked-replies for snaNetwork are made up of
multiple instances of the following sequence:
vertex1 --Origin node of the transmission group
vertex2 --Destination node of the transmission group
endpoint1 --Transmission group between vertex1 and vertex2

In general, the data structure of vertex1, vertex2, and endpoint1 is as follows:
vertex1

object --object distinguished name
class --object class
states --OSI states of this object
info

resourceSequenceNumber --object attribute
appnNodeCapabilities --object attribute
extendedAppnNodeCapabilities --object attribute

--(reported only for central
--directory server nodes)

vertex2
object --object distinguished name
class --object class

endpoint1
object --object distinguished name
class --object class (APPN TG)
states --OSI states of this object
info,

resourceSequenceNumber --object attribute
appnTGCapabilities --object attribute
cp-cpSessionSupport --object attribute

The format of vertex1 differs according to the data received. When vertex2 or
endpoint1 is the main reason for an update, vertex1 shows only the following:
vertex1

object --object distinguished name
class --object class

The following list includes descriptions of what is contained in vertex1, vertex2, and
endpoint1.

vertex1
Data reported for a single node object for either initial data or for a single
update for the object. Vertex 1 is considered the origin of the TG specified
in endpoint 1.

object Distinguished name of origin node resource

class Objects related to the monitored node are reported under the
following object classes:

snaNetwork

176 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

v appnNN
v interchangeNode
v virtualRoutingNode

states 14-character string for the OSI states:
v operationalState
v usageState
v administrativeState
v availabilityStatus
v proceduralStatus
v unknownStatus
v nativeStatus (nativeStatus is always N/A for the APPN

snaNetwork data.)

info Set of attributes for the node object. This field is missing from
vertex1 if vertex2 or endpoint1 is the main reason for the update.

vertex2
Contains all data reported for a single node object for either initial data or a
single update for the object. Vertex 2 is considered the destination of the
TG specified in endpoint 1.

object Distinguished name of destination node resource.

class Objects related to the monitored node are reported under the
following object classes:
v appnNN
v virtualRoutingNode

Note that interchange nodes are reported in class appnNN in vertex
2.

endpoint1
Contains data for a TG that connects vertex1 and vertex2.

object Distinguished name of TG resource.

class Monitored transmission group object is reported under the
appnTransmissionGroup object class.

states Consists of a 14-character string for the OSI states. (nativeStatus is
always N/A for the APPN snaNetwork data.)

info Set of attributes for the transmission group object.

Note that the reason field is always omitted for APPN data and should always
assume the default value of addOrUpdate.

snaNetwork Snapshot Data (Subarea Data)
For subarea network topology data, the linked-replies for snaNetwork contain data
made up of multiple instances of the following sequence:
vertex1 --Adjacent SSCP (CDRM)
vertex2 --Local VTAM
endpoint1 --Virtual route supporting active CDRM

VTAM provides the long form of vertex1 when it reports initial data or object
creation such as for the activation of a new CDRM major node. VTAM provides the
short form of vertex1 when it reports changes or deletions.

In general, the data structure of vertex1, vertex2, and endpoint1 is as follows:

snaNetwork

Chapter 15. VTAM Topology Monitoring 177

vertex1
object --object distinguished name
class --object class (CDRM)
states --OSI states of this object
info

dependencies --object attribute
realSSCPname --object attribute

reason --reason for this vertex1 to be reported

vertex2
object --object distinguished name (local VTAM)
class --object class

endpoint1
object --object distinguished name
class --object class (VR)

The following list explains what the fields contain.

vertex1
Contains all data reported for a single node object for either initial data or a
single update for the object (CDRM).

object Distinguished name of CDRM resource

class Monitored node objects are reported under the
crossDomainResourceManager object class.

states Consists of a 14-character string for the OSI states

info Set of attributes for the CDRM related object.

reason
Indicates why the snapshot update is being sent.

Note: The reason field is omitted when the intended value is
addOrUpdate.

Value Description

deleted
Object is deleted.

addOrUpdate
Object is added or changed. The default is
addOrUpdate.

vertex2
Reports on the local VTAM agent host.

object Distinguished name of local VTAM agent host.

class Always reported as t5node object class.

endpoint1
Contains all data reported for a single virtual route object for either initial
data or a single update for the virtual route.

object Distinguished name of the virtual route.

class Monitored virtual route objects are reported under the virtualRoute
object class.

To see the vertex1 entries that are included in each type of subarea snapshot
action, refer to Table 12 on page 179.

snaNetwork

178 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Table 12. vertex1 Entries for CDRM Reported Objects. Object creation means the creation
of a new CDRM.

Initial Data Object
Creation

Object
State

Change

Object
Attribute
Change

Object
Deletion

object X X X X X

class X X X X X

states X N/A X X N/A

info X X X X X

dependencies X X X X N/A

realSSCPname X X X N/A N/A

reason N/A N/A N/A N/A X

snaNetwork Snapshot Example
The following example shows the initial data response for appnPlusSubarea
snaNetwork snapshot of the following configuration, where SSCP2A is defined to
SSCP1A as a CDRM and an APPN TG is active between SSCP1A and SSCP2A.

(Interchange node)
SSCP1A -------------------- SSCP2A

APPN TG 21 (Interchange node)

msg CMIP-1.ROIVapdu (invokeID
131074, linked-ID 196610, operation-value 2, arg
ument (actionResult (managedObjectClass 1.3.18.0.
0.2151, managedObjectInstance (distinguishedName
(RelativeDistinguishedName (AttributeValueAsserti
on (attributeType 1.3.18.0.2.4.6, attributeValue
"NETA")), RelativeDistinguishedName (AttributeVal
ueAssertion (attributeType 1.3.18.0.0.2032, attri
buteValue "SSCP1A")), RelativeDistinguishedName (
AttributeValueAssertion (attributeType 1.3.18.0.0
.2216, attributeValue (string "SnaNetwork"))))),
actionReply (actionType 1.3.18.0.0.2222, actionRe
plyInfo ((vertex1 (object (distinguishedName (Rel
ativeDistinguishedName (AttributeValueAssertion (
attributeType 1.3.18.0.2.4.6, attributeValue "NET
A")), RelativeDistinguishedName (AttributeValueAs
sertion (attributeType 1.3.18.0.0.2032, attribute
Value "SSCP1A")))), class 1.3.18.0.0.1826, states
010101000000FF, info (Attribute (attributeId 1.3
.18.0.0.2019, attributeValue 2), Attribute (attri
buteId 1.3.18.0.0.1940, attributeValue 3348))), v
ertex2 (object (distinguishedName (RelativeDistin
guishedName (AttributeValueAssertion (attributeTy
pe 1.3.18.0.2.4.6, attributeValue "NETA")), Relat
iveDistinguishedName (AttributeValueAssertion (at
tributeType 1.3.18.0.0.2032, attributeValue "SSCP
2A")))), class 1.3.18.0.0.1822), endpoint1 (objec
t (distinguishedName (RelativeDistinguishedName (
AttributeValueAssertion (attributeType 1.3.18.0.2
.4.6, attributeValue "NETA")), RelativeDistinguis
hedName (AttributeValueAssertion (attributeType 1
.3.18.0.0.2032, attributeValue "SSCP1A")), Relati
veDistinguishedName (AttributeValueAssertion (att
ributeType 1.3.18.0.0.2044, attributeValue "21.NE
TA.SSCP2A")))), class 1.3.18.0.0.1823, states 010
101000000FF, info (Attribute (attributeId 1.3.18.
0.0.2019, attributeValue 2), Attribute (attribute

snaNetwork

Chapter 15. VTAM Topology Monitoring 179

Id 1.3.18.0.0.1941, attributeValue 00), Attribute
(attributeId 1.3.18.0.0.1958, attributeValue TRU
E)))), (vertex1 (object (distinguishedName (Relat
iveDistinguishedName (AttributeValueAssertion (at
tributeType 1.3.18.0.2.4.6, attributeValue "NETA"
)), RelativeDistinguishedName (AttributeValueAsse
rtion (attributeType 1.3.18.0.0.2032, attributeVa
lue "SSCP2A")))), class 1.3.18.0.0.1826, states 0
10101000000FF, info (Attribute (attributeId 1.3.1
8.0.0.2019, attributeValue 2), Attribute (attribu
teId 1.3.18.0.0.1940, attributeValue 3348))), ver
tex2 (object (distinguishedName (RelativeDistingu
ishedName (AttributeValueAssertion (attributeType
1.3.18.0.2.4.6, attributeValue "NETA")), Relativ
eDistinguishedName (AttributeValueAssertion (attr
ibuteType 1.3.18.0.0.2032, attributeValue "SSCP1A
")))), class 1.3.18.0.0.1822), endpoint1 (object
(distinguishedName (RelativeDistinguishedName (At
tributeValueAssertion (attributeType 1.3.18.0.2.4
.6, attributeValue "NETA")), RelativeDistinguishe
dName (AttributeValueAssertion (attributeType 1.3
.18.0.0.2032, attributeValue "SSCP2A")), Relative
DistinguishedName (AttributeValueAssertion (attri
buteType 1.3.18.0.0.2044, attributeValue "21.NETA
.SSCP1A")))), class 1.3.18.0.0.1823, states 01010
1000000FF, info (Attribute (attributeId 1.3.18.0.
0.2019, attributeValue 2), Attribute (attributeId
1.3.18.0.0.1941, attributeValue 00), Attribute (
attributeId 1.3.18.0.0.1958, attributeValue TRUE)
))), (vertex1 (object (distinguishedName (Relativ
eDistinguishedName (AttributeValueAssertion (attr
ibuteType 1.3.18.0.2.4.6, attributeValue "NETA"))
, RelativeDistinguishedName (AttributeValueAssert
ion (attributeType 1.3.18.0.0.2032, attributeValu
e "SSCP1A")), RelativeDistinguishedName (Attribut
eValueAssertion (attributeType 1.3.18.0.0.2032, a
ttributeValue "NETA.SSCP1A")))), class 1.3.18.0.0
.2278, states 01010100000000, info (Attribute (at
tributeId 1.3.18.0.0.2194, attributeValue (depend
ents (and (Dependents (item (distinguishedName (R
elativeDistinguishedName (AttributeValueAssertion
(attributeType 1.3.18.0.2.4.6, attributeValue "N
ETA")), RelativeDistinguishedName (AttributeValue
Assertion (attributeType 1.3.18.0.0.2032, attribu
teValue "SSCP1A")), RelativeDistinguishedName (At
tributeValueAssertion (attributeType 1.3.18.0.0.2
272, attributeValue "CDRM.CDRM1A"))))), Dependent
s (item (distinguishedName (RelativeDistinguished
Name (AttributeValueAssertion (attributeType 1.3.
18.0.2.4.6, attributeValue "NETA")), RelativeDist
inguishedName (AttributeValueAssertion (attribute
Type 1.3.18.0.0.2032, attributeValue "SSCP1A"))))
))))), Attribute (attributeId 1.3.18.0.0.5246, at
tributeValue "NETA.SSCP1A"))), vertex2 (object (d
istinguishedName (RelativeDistinguishedName (Attr
ibuteValueAssertion (attributeType 1.3.18.0.2.4.6
, attributeValue "NETA")), RelativeDistinguishedN
ame (AttributeValueAssertion (attributeType 1.3.1
8.0.0.2032, attributeValue "SSCP1A")))), class 1.
3.18.0.0.1845)), (vertex1 (object (distinguishedN
ame (RelativeDistinguishedName (AttributeValueAss
ertion (attributeType 1.3.18.0.2.4.6, attributeVa
lue "NETA")), RelativeDistinguishedName (Attribut
eValueAssertion (attributeType 1.3.18.0.0.2032, a
ttributeValue "SSCP1A")), RelativeDistinguishedNa
me (AttributeValueAssertion (attributeType 1.3.18
.0.0.2032, attributeValue "NETA.SSCP2A")))), clas

snaNetwork

180 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

s 1.3.18.0.0.2278, states 00000100400003, info (A
ttribute (attributeId 1.3.18.0.0.2194, attributeV
alue (dependents (and (Dependents (item (distingu
ishedName (RelativeDistinguishedName (AttributeVa
lueAssertion (attributeType 1.3.18.0.2.4.6, attri
buteValue "NETA")), RelativeDistinguishedName (At
tributeValueAssertion (attributeType 1.3.18.0.0.2
032, attributeValue "SSCP1A")), RelativeDistingui
shedName (AttributeValueAssertion (attributeType
1.3.18.0.0.2272, attributeValue "CDRM.CDRM1A"))))
), Dependents (item (distinguishedName (RelativeD
istinguishedName (AttributeValueAssertion (attrib
uteType 1.3.18.0.2.4.6, attributeValue "NETA")),
RelativeDistinguishedName (AttributeValueAssertio
n (attributeType 1.3.18.0.0.2032, attributeValue
"SSCP1A"))))))))), Attribute (attributeId 1.3.18.
0.0.5246, attributeValue ""))), vertex2 (object (
distinguishedName (RelativeDistinguishedName (Att
ributeValueAssertion (attributeType 1.3.18.0.2.4.
6, attributeValue "NETA")), RelativeDistinguished
Name (AttributeValueAssertion (attributeType 1.3.
18.0.0.2032, attributeValue "SSCP1A")))), class 1
.3.18.0.0.1845)))))))

The linked-reply in the example, identified by the operation value being 2, contains
a set of 4 instances of the (v1,v2,e1) sequence, although not all instances of the
sequence contain all fields of the sequence. The following is a summary of the
contents of the 4 sequences:

First sequence: (v1,v2,e1) APPN Data
vertex 1 : NETA;SSCP1A

Class : interchangeNode
States :

Operational State : Enabled
Usage State : Active
Administrative State : Unlocked
Availability Status : No Status
Procedural Status : No Status
Unknown Status : False
Native Status : N/A

Info :
resourceSequenceNumber : 2
appnNodeCapabilities : 3348

vertex 2 : NETA;SSCP2A

Class : appnNN

endpoint 1 : NETA;SSCP1A;21.NETA.SSCP2A

Class : appnTransmissionGroup
States :

Operational State : Enabled
Usage State : Active
Administrative State : Unlocked
Availability Status : No Status
Procedural Status : No Status
Unknown Status : False
Native Status : N/A

Info :
resourceSequenceNumber : 2
appnTGcapabilities : 00
cp-cpSessionSupport : TRUE

snaNetwork

Chapter 15. VTAM Topology Monitoring 181

This sequence represents the connection from the local node to partner node. This
sequence shows:

v In vertex 1: name, class and attributes of the local node (origin of TG). SSCP1A
is not a central directory server, so extendedAppnNodeCapabilities is not
reported.

v In vertex 2: name and class of the partner node (destination of TG).

v In endpoint 1: name, class and attributes of the APPN transmission group (TG
number : 21)

Second sequence: (v1,v2,e1) APPN Data
vertex 1 : NETA;SSCP2A

Class : interchangeNode
States :

Operational State : Enabled
Usage State : Active
Administrative State : Unlocked
Availability Status : No Status
Procedural Status : No Status
Unknown Status : False
Native Status : N/A

Info :
resourceSequenceNumber : 2
appnNodeCapabilities : 3348

vertex 2 : NETA;SSCP1A

Class : appnNN

endpoint 1 : NETA;SSCP2A;21.NETA.SSCP1A

Class : appnTransmissionGroup
States :

Operational State : Enabled
Usage State : Active
Administrative State : Unlocked
Availability Status : No Status
Procedural Status : No Status
Unknown Status : False
Native Status : N/A

Info :
resourceSequenceNumber : 2
appnTGcapabilities : 00
cp-cpSessionSupport : TRUE

This sequence represents the connection from the partner node to local node. This
sequence shows:

v In vertex 1: name, class and attributes of the partner node (origin of TG).
SSCP2A is not a central directory server so extendedAppnNodeCapabilities is
not reported.

v In vertex 2: name and class of the local node (destination of TG).

v In endpoint 1: name, class and attributes of the APPN transmission group (TG
number : 21). Note that APPN transmission groups are unidirectional and this is
a different TG than reported in the first sequence.

Third sequence: (v1,v2) Subarea Data
vertex1 : NETA;SSCP1A;NETA.SSCP1A

Class : CrossDomainResourceManager

snaNetwork

182 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

States :
Operational State : Enabled
Usage State : Active
Administrative State : Unlocked
Availability Status : No Status
Procedural Status : No Status
Unknown Status : False
Native Status : ACTIVE

Info :
realSSCPname : NETA.SSCP1A
dependencies : NETA;SSCP1A;CDRM.CDRM1A

NETA;SSCP1A

vertex2 : NETA;SSCP1A

Class : t5Node

This sequence shows the name and state of local agent host CDRM. This
sequence shows :

v The long form of vertex1. The first object in Dependencies is a definitionGroup
representing the major node where the CDRM is defined.

v The only form of vertex2, representing the local VTAM agent host. Note the
class is reported as t5Node for the subarea topology even though the actual host
type is interchange node (as shown in the first sequence).

Fourth sequence: (v1,v2) Subarea Data
vertex1 : NETA;SSCP1A;NETA.SSCP2A

Class : CrossDomainResourceManager
States :

Operational State : Disabled
Usage State : Idle
Administrative State : Unlocked
Availability Status : No Status
Procedural Status : Not Initialized
Unknown Status : False
Native Status : NEVAC

Info :
realSSCPname : NETA.SSCP1A
dependencies : NETA;SSCP1A;CDRM.CDRM1A

NETA;SSCP1A

vertex2 : NETA;SSCP1A

Class : t5Node

This sequence shows the name and state of CDRM for SSCP2A (a cross domain
host). This sequence shows :
v The long form of vertex1. SSCP2A is not an active CDRM (no CDRM-CDRM

session) so no virtual route is reported.
v The only form of vertex2, representing the local VTAM agent host.

The following example shows the APPN network topology update data for the
ongoing snaNetwork snapshot. The update was caused by inactivating the line and
PU connecting the two hosts. In this example only APPN topology changes are
reported because this is an APPN connection.

msg CMIP-1.ROIVapdu (invokeID
131076, linked-ID 196610, operation-value 2, arg
ument (actionResult (managedObjectClass 1.3.18.0.
0.2151, managedObjectInstance (distinguishedName

snaNetwork

Chapter 15. VTAM Topology Monitoring 183

(RelativeDistinguishedName (AttributeValueAsserti
on (attributeType 1.3.18.0.2.4.6, attributeValue
"NETA")), RelativeDistinguishedName (AttributeVal
ueAssertion (attributeType 1.3.18.0.0.2032, attri
buteValue "SSCP1A")), RelativeDistinguishedName (
AttributeValueAssertion (attributeType 1.3.18.0.0
.2216, attributeValue (string "SnaNetwork"))))),
actionReply (actionType 1.3.18.0.0.2222, actionRe
plyInfo ((vertex1 (object (distinguishedName (Rel
ativeDistinguishedName (AttributeValueAssertion (
attributeType 1.3.18.0.2.4.6, attributeValue "NET
A")), RelativeDistinguishedName (AttributeValueAs
sertion (attributeType 1.3.18.0.0.2032, attribute
Value "SSCP1A")))), class 1.3.18.0.0.1822), verte
x2 (object (distinguishedName (RelativeDistinguis
hedName (AttributeValueAssertion (attributeType 1
.3.18.0.2.4.6, attributeValue "NETA")), RelativeD
istinguishedName (AttributeValueAssertion (attrib
uteType 1.3.18.0.0.2032, attributeValue "SSCP2A")
))), class 1.3.18.0.0.1822), endpoint1 (object (d
istinguishedName (RelativeDistinguishedName (Attr
ibuteValueAssertion (attributeType 1.3.18.0.2.4.6
, attributeValue "NETA")), RelativeDistinguishedN
ame (AttributeValueAssertion (attributeType 1.3.1
8.0.0.2032, attributeValue "SSCP1A")), RelativeDi
stinguishedName (AttributeValueAssertion (attribu
teType 1.3.18.0.0.2044, attributeValue "21.NETA.S
SCP2A")))), class 1.3.18.0.0.1823, states 0101010
00000FF, info (Attribute (attributeId 1.3.18.0.0.
2019, attributeValue 4), Attribute (attributeId 1
.3.18.0.0.1941, attributeValue 00), Attribute (at
tributeId 1.3.18.0.0.1958, attributeValue TRUE)))
), (vertex1 (object (distinguishedName (RelativeD
istinguishedName (AttributeValueAssertion (attrib
uteType 1.3.18.0.2.4.6, attributeValue "NETA")),
RelativeDistinguishedName (AttributeValueAssertio
n (attributeType 1.3.18.0.0.2032, attributeValue
"SSCP1A")))), class 1.3.18.0.0.1822), vertex2 (ob
ject (distinguishedName (RelativeDistinguishedNam
e (AttributeValueAssertion (attributeType 1.3.18.
0.2.4.6, attributeValue "NETA")), RelativeDisting
uishedName (AttributeValueAssertion (attributeTyp
e 1.3.18.0.0.2032, attributeValue "SSCP2A")))), c
lass 1.3.18.0.0.1822), endpoint1 (object (disting
uishedName (RelativeDistinguishedName (AttributeV
alueAssertion (attributeType 1.3.18.0.2.4.6, attr
ibuteValue "NETA")), RelativeDistinguishedName (A
ttributeValueAssertion (attributeType 1.3.18.0.0.
2032, attributeValue "SSCP1A")), RelativeDistingu
ishedName (AttributeValueAssertion (attributeType
1.3.18.0.0.2044, attributeValue "21.NETA.SSCP2A"
)))), class 1.3.18.0.0.1823, states 000001000000F
F, info (Attribute (attributeId 1.3.18.0.0.2019,
attributeValue 6), Attribute (attributeId 1.3.18.
0.0.1941, attributeValue 00), Attribute (attribut
eId 1.3.18.0.0.1958, attributeValue TRUE)))))))))

First sequence: (v1,v2,e1) APPN Data
vertex 1 : NETA;SSCP1A

Class : appnNN

vertex 2 : NETA;SSCP2A

Class : appnNN

snaNetwork

184 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

endpoint 1 : NETA;SSCP1A;21.NETA.SSCP2A

Class : appnTransmissionGroup
States :

Operational State : Enabled
Usage State : Active
Administrative State : Unlocked
Availability Status : No Status
Procedural Status : No Status
Unknown Status : False
Native Status : N/A

Info :
resourceSequenceNumber : 4
appnTGcapabilities : 00
cp-cpSessionSupport : TRUE

This sequence reports the state of connection between network nodes SSCP1A and
SSCP2A through APPN TG 21.

Second sequence: (v1,v2,e1) APPN Data
vertex 1 : NETA;SSCP1A

Class : appnNN

vertex 2 : NETA;SSCP2A

Class : appnNN

endpoint 1 : NETA;SSCP1A;21.NETA.SSCP2A

Class : appnTransmissionGroup
States :

Operational State : Disabled
Usage State : Idle
Administrative State : Unlocked
Availability Status : No Status
Procedural Status : No Status
Unknown Status : False
Native Status : N/A

Info :
resourceSequenceNumber : 6
appnTGcapabilities : 00
cp-cpSessionSupport : TRUE

This sequence reports the state of connection between network nodes SSCP1A and
SSCP2A through APPN TG 21. Note that the TG operational state is now disabled.

Requesting and Monitoring Local Topology (snaLocalTopo)
This section contains the following topics:
v “Overview” on page 186
v “Action Request” on page 187
v “Initial Data Response” on page 188
v “Update Data Response” on page 189
v “Action Termination” on page 191
v “snaLocalTopo Snapshot Data” on page 192
v “snaLocalTopo Snapshot Example” on page 197

snaNetwork

Chapter 15. VTAM Topology Monitoring 185

Overview
This section describes the actions that are used to monitor the resources owned by
a VTAM topology agent host.

Management of VTAM resources requires that a manager application program be
able to obtain an initial list of the resources, their status, their connectivity, and
selected other pertinent data to be followed later by notification of changes to the
status or connectivity. The manager application program can monitor these VTAM
resources by sending the ACTION(snapshot) request to the snaLocalTopo object
instance at the local VTAM topology agent or at a remote VTAM topology agent.

The snaLocalTopo snapshot is used to obtain information about the following
resource data:

v VTAM topology agent host

A set of attribute data associated with the object class of the VTAM node is
reported. The VTAM topology agent host is always reported as a vertex 1 in the
snapshot response.

v Remote VTAM host

If a remote VTAM host is connected to the VTAM topology agent host, the
remote VTAM host is reported in the snaLocalTopo snapshot. The remote VTAM
host is reported as a vertex 2 in the snapshot response.

v Owned NCPs

For NCPs that are owned by the VTAM topology agent host, a set of attribute
data associated with the NCP itself is reported. An owned NCP is reported as a
t4Node object in vertex 2 (associated with a VTAM host vertex 1) and also is
reported as a vertex 1 in the snapshot response.

v Contacted NCPs

A contacted NCP is reported as a t4Node object in vertex 2 (associated with a
local NCP vertex 1).

v Virtual routing nodes

A virtual node is reported as a virtualRoutingNode object in vertex 2.

v Other contacted nodes

Other nodes that are contacted are reported as t2-1Node, lenNode, appnEN, and
appnNN objects in vertex 2. Type 1 and type 2.0 nodes are not reported in vertex
2.

v Lines

The lines and channels attached to the VTAM topology agent host are reported;
also, for any NCP reported as a vertex 1, the predefined and dynamically defined
lines are reported. All lines and channels are reported as port objects in vertex 1.

v Physical units and link stations

The dynamic, leased, and switched PUs and link stations associated with the
VTAM topology agent host or with owned NCPs (reported as vertex 1) are
reported as logicalLink objects in endpoint 1. Remote link stations, for nodes
reported in vertex 2, are not reported as objects; instead, they are reported in the
partnerConnection attribute of the logicalLink object in endpoint 1.

v Connections to adjacent nodes

The connections from the VTAM host to adjacent nodes are reported; also, the
connections from owned NCPs are reported. The connections are reported as
appnTransmissionGroup and subareaTransmissionGroup objects in endpoint 1.

snaLocalTopo

186 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

The VTAM topology agent host is reported as an instance of one of the following
object classes:
v Type 5 node (t5Node)
v APPN network node (appnNN)
v Interchange node (interchangeNode)
v APPN end node (appnEN)
v Migration data host (migrationDataHost)

When a connection to an adjacent, contacted node is reported, the adjacent node is
reported as an instance of one of the following object classes:
v Type 5 node (t5Node)
v APPN network node (appnNN)
v Interchange node (interchangeNode)
v APPN end node (appnEN)
v Type 4 node (t4Node)
v LEN node (lenNode)
v Type 2.1 node (t2-1Node)
v Virtual routing node (virtualRoutingNode)

A connection to an adjacent node is reported by the following resources:
v APPN transmission groups (appnTransmissionGroup)
v Subarea transmission groups (subareaTransmissionGroup)
v Lines and channels (port)
v Physical units (logicalLink)
v Link stations (logicalLink)

Other predefined resources (that are not currently being used for connections) are
also reported as part of the snaLocalTopo snapshot.

The data reported for a snaLocalTopo snapshot can be partially controlled with the
VTAMTOPO filtering option. “Appendix G. VTAMTOPO Filtering Option Reporting”
on page 349 shows a summary of the results of using the VTAMTOPO filtering
option for connected switched PUs. See the z/OS Communications Server: SNA
Resource Definition Reference and the z/OS Communications Server: SNA
Operation for more information about the VTAMTOPO filtering option.

Action Request
A snapshot action request is used to request local topology data from a VTAM
topology agent host. The action request is sent as an m-Action-Confirmed
operation.

The manager application program can request that any future updates to the
snaLocalTopo object be returned, as they occur. The local topology data is
requested without updates by specifying the oneTimeOnly value in the
actionInfoArg portion of the request. The local topology data and future updates
can be requested by specifying the ongoing value in the actionInfoArg portion of
the request.

The target object of the request is the only object instance in the snaLocalTopo
object class. Therefore, a single object instance name must be specified as the
baseManagedObjectInstance in the request.

Optionally, the manager application program can specify the appnPlusSubareaParm
parameter that indicates whether the requested data is appnOnly or
appnPlusSubarea. An appnOnly request does not result in only APPN objects being

snaLocalTopo

Chapter 15. VTAM Topology Monitoring 187

reported. However, it does result in no NCP objects being reported. Instead, an
NCP is considered part of a composite node with the VTAM topology agent host.
The appnPlusSubarea request results in NCPs being reported as type 4 nodes. If
the appnPlusSubareaParm is not specified in the request, the default value is
appnOnly.

The following example shows a start request for snaLocalTopo data:
msg CMIP-1.ROIVapdu (invokeID 196612,

operation-value 7, argument (baseManagedObjectCl
ass 1.3.18.0.0.2152, baseManagedObjectInstance (
distinguishedName (RelativeDistinguishedName (At
tributeValueAssertion (attributeType 1.3.18.0.2.
4.6, attributeValue "NETA")), RelativeDistinguis
hedName (AttributeValueAssertion (attributeType
1.3.18.0.0.2032, attributeValue "SSCP1A")), Rela
tiveDistinguishedName (AttributeValueAssertion (
attributeType 1.3.18.0.0.2216, attributeValue (s
tring "SnaLocalTopology"))))), actionInfo (actio
nType 1.3.18.0.0.2222, actionInfoArg (start ongo
ing, addlInfo (ManagementExtension (identifier 1
.3.18.0.0.2164, significance TRUE, information 1
))))))

Note from the example that the snaLocalTopo object name is composed of the
network identifier and node name of the VTAM topology agent host, followed by the
graphId (1.3.18.0.0.2216) naming attribute, which is required to have a value of
(string "SnaLocalTopology"). The actionType is a snapshot, and the
actionInfoArg indicates that this request is to start an ongoing snapshot. Also in
this example the appnPlusSubareaParm (1.3.18.0.0.2164) is specified with
information value of 1, which means appnPlusSubarea. An information value of 0
means appnOnly. The significance value of TRUE means that if the VTAM topology
agent finds an error associated with the specification of this appnPlusSubareaParm
parameter, then the manager application program needs to receive an error
response (ROER). A FALSE value tells the VTAM topology agent to ignore the
parameter if an error is found.

This is a typical example of a snaLocalTopo snapshot request that can be used
simply by supplying the appropriate network ID and SSCP or CP name of the VTAM
topology agent host.

Initial Data Response
Both ongoing and oneTimeOnly snapshots receive a set of initial data as part of the
snapshot response. The initial data is the report of the appropriate resource data
and connectivity as it exists at the time the request is processed. The contents of
the initial data depend most on the current configuration of the local resources and
somewhat on the network configuration. The contents of the initial data also
depends on the value of the appnPlusSubareaParm specified in the snapshot
request. If the appnPlusSubareaParm value is 0 (appnOnly), the NCPs are not
reported separately from the VTAM host; they are considered part of the VTAM
composite node.

The initial data is sent by a set of linked-reply messages; each linked-reply
message contains one or more sets of the sequence (vertex 1, vertex 2, endpoint
1), abbreviated as (v1,v2,e1). Vertex 1 represents either the VTAM topology agent
host node or an owned NCP node. Vertex 1 optionally contains port information.
Vertex 2 represents a contacted node adjacent to the node specified in the
associated vertex 1; vertex 2 is optional. If both vertex 1 and vertex 2 are present,
endpoint 1 represents the transmission group used for the connection and the

snaLocalTopo

188 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

logicalLink on the vertex 1 side of the connection. If only vertex 1 is present (no
vertex 2), endpoint 1 represents a logicalLink at the vertex 1 node that is not
currently being used for a connection. Endpoint 1 is optional.

The first time a node is reported as vertex 1 in a snaLocalTopo snapshot, the full
set of attribute data associated with that node is reported; this is referred to as the
long form of vertex 1. For subsequent reports of that same node in vertex 1, the
attribute data is omitted; this is called the short form of vertex 1.

Each sequence of (v1,v2,e1) can report at most one port, one logicalLink, one
transmission group, and two nodes. All resources reported in a single sequence of
(v1,v2,e1) are related.

To report other VTAM resources, such as other lines or PUs, VTAM must be
repeated as a vertex 1 for each sequence of (v1,v2,e1) until the list of resources is
exhausted. When all initial data has been sent, the VTAM topology agent sends one
additional linked-reply message; the value in the actionReplyInfo field of this
message is ’()’, an empty set.

If the snaLocalTopo snapshot request is the oneTimeOnly type, the empty set
linked-reply is followed by the final snapshot RORS response message. If the
snapshot is the ongoing type, no additional messages are sent by the VTAM
topology agent until a reportable change occurs to a resource within the scope of
the snaLocalTopo snapshot request.

Update Data Response
For ongoing snapshots after the initial data has been sent, all subsequent
reportable resource changes are reported in linked-reply messages. The same
message syntax is used for the update data as is used for initial data. In fact, a
single linked-reply message does not indicate whether the data is initial data or
update data; it depends solely on whether the message arrived before the empty
set linked-reply or after it.

Update data is generated by the VTAM topology agent for these reasons:

v An object is created.

Objects are reported when VTAM learns about them. For example, when a major
node is activated, VTAM learns about the resources defined in the major node.
When a connection is established, VTAM learns about the contacted node and
reports the node. The long form of the object is always reported for an object
creation, with the reason field omitted, implying the default value of addOrUpdate.

v An object is deleted.

Objects are reported as deleted when the object definition is deleted from VTAM,
as happens when a major node is inactivated. Objects are also reported as
deleted when they logically cease to exist, as is the case with an APPN
transmission group whose connection has been broken. The short form of an
object is reported for an object deletion, with reason value of deleted.

v An object changes state.

An object is reported when the internal VTAM state of the object changes, such
as from pending-active to active. The internal VTAM state is mapped to the
extended OSI state attributes, which are reported. Because several VTAM
internal states are mapped to the same set of OSI state attribute values, it is
possible for the internal VTAM status to change but the derived OSI states not to
change. These unchanged OSI states might still be reported by VTAM. Note that
it is likely that most of the resource state changes will not each result in a

snaLocalTopo

Chapter 15. VTAM Topology Monitoring 189

sequence of (v1,v2,e1) being sent since the merge process holds and merges
updates where the resources are in non-resting states. For more information
about the merge process, refer to “ACTION(snapshot) Update Merging” on
page 170.

The short form of the object is generally reported for state changes; however,
important attributes may also be reported with the state changes. The reason
field is omitted, implying the default value of addOrUpdate.

v An attribute value changes.

An attribute value change refers to changes in resource data other than the state
of the resource. In general, the VTAM topology agent does not support the
reporting of attribute value changes; however, there are instances of attribute
value changes that are considered to be too important to ignore. These few
selected changes are reported. The short form of an object is reported for an
attribute value change; however, there will always be a small set of attributes
also reported. The reason field is omitted, implying the default value of
addOrUpdate.

Table 13 shows the snaLocalTopo update data and the reasons for the updates.

Note: MODIFY VTAMTOPO can generate a snaLocalTopo Update.

Table 13. Resources with Reason for snaLocalTopo Update Data

Resource Reason Notes

Local VTAM None Local VTAM is never the cause of update
data

NCP Vertex 1 created NCP major node activated

Vertex 1 deleted NCP major node deactivated

Vertex 1 state change NCP changed state

Vertex 1 attribute value
change

Learned gateway information; report
attributes gatewayNode or
interconnectedNetIds or both

Line Created Major node containing line activated

Deleted Major node containing line deactivated

State change Line changed state

Attribute value change Report learned data in attributes:
adapterAddresses or relatedAdapter.

PU or link
station

Created Major node containing PU activated

Deleted Major node containing PU deactivated

State change PU changed state

Attribute value change If associated LINE information changes,
report attributes portId or
adjacentLinkStationAddress or both

Contacted
node

Created New connection established to node

Deleted Loss of connection to node

Transmission
group

Created New connection established

Deleted Loss of a connection

The VTAM topology agent continues to send update data until a valid request is
received to stop the snapshot.

snaLocalTopo

190 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Action Termination
The VTAM topology agent terminates an ongoing snaLocalTopo snapshot action
under the following conditions:
v A stop snapshot action request is received.
v An error occurs during snapshot processing in VTAM.
v The association between the local CMIP services and the manager application

program’s CMIP services terminates.

The following is an example of a valid stop request:
msg CMIP-1.ROIVapdu (invokeID 196613,

operation-value 7, argument (baseManagedObjectCla
ss 1.3.18.0.0.2152, baseManagedObjectInstance (di
stinguishedName (RelativeDistinguishedName (Attri
buteValueAssertion (attributeType 1.3.18.0.2.4.6,
attributeValue "NETA")), RelativeDistinguishedNa
me (AttributeValueAssertion (attributeType 1.3.18
.0.0.2032, attributeValue "SSCP1A")), RelativeDis
tinguishedName (AttributeValueAssertion (attribut
eType 1.3.18.0.0.2216, attributeValue (string "Sn
aLocalTopology"))))), actionInfo (actionType 1.3.
18.0.0.2222, actionInfoArg (stop 196612))))

The stop request in the previous example looks very similar to the associated start
request except for the actionInfoArg portion of the request. For the stop request,
the stop keyword is used along with the invoke identifier of the start request that is
to be terminated.

The result of the VTAM topology agent’s processing of a stop request is three
messages:
v An empty set linked-reply for the start request
v An RORS response to the start request
v An RORS response to the stop request

The following shows examples of these three messages:

First, the empty set linked-reply: (Note that the associated invoke identifier in a
linked-reply is given in the linked-ID field.)

msg CMIP-1.ROIVapdu (invokeID
1, linked-ID 196612, operation-value 2, argument
(actionResult (managedObjectClass 1.3.18.0.0.215
2, managedObjectInstance (distinguishedName (Rela
tiveDistinguishedName (AttributeValueAssertion (a
ttributeType 1.3.18.0.2.4.6, attributeValue "NETA
")), RelativeDistinguishedName (AttributeValueAss
ertion (attributeType 1.3.18.0.0.2032, attributeV
alue "SSCP1A")), RelativeDistinguishedName (Attri
buteValueAssertion (attributeType 1.3.18.0.0.2216
, attributeValue (string "SnaLocalTopology"))))),
actionReply (actionType 1.3.18.0.0.2222, actionR
eplyInfo ()))))

Next, the RORS for the start request:
msg CMIP-1.RORSapdu (invokeID

196612)

Finally, the RORS for the stop request:
msg CMIP-1.RORSapdu (invokeID

196613, resultOption (operation-value 7, result
(managedObjectClass 1.3.18.0.0.2152, managedObjec

snaLocalTopo

Chapter 15. VTAM Topology Monitoring 191

tInstance (distinguishedName (RelativeDistinguish
edName (AttributeValueAssertion (attributeType 1.
3.18.0.2.4.6, attributeValue "NETA")), RelativeDi
stinguishedName (AttributeValueAssertion (attribu
teType 1.3.18.0.0.2032, attributeValue "SSCP1A"))
, RelativeDistinguishedName (AttributeValueAssert
ion (attributeType 1.3.18.0.0.2216, attributeValu
e (string "SnaLocalTopology"))))), actionReply (a
ctionType 1.3.18.0.0.2222, actionReplyInfo ()))))

snaLocalTopo Snapshot Data
For local topology data, the structure of the long form of vertex 1 is defined as
follows:

vertex1
Identifies the beginning of vertex 1. The lower level fields in vertex 1 are:

object Object instance name of the node represented by vertex 1. VTAM
always returns the distinguishedName form of an object instance
name.

class Object identifier (OI) representing the object class of the reported
node.

states String of characters representing the OSI state of the vertex 1
node. For a list of OSI states, refer to “OSI Object States” on
page 155 .

info Set of attributes providing data about the vertex 1 node. Not all
attributes appear in all instances of vertex 1. The list of all possible
attributes is:

dependencies
Included only if vertex 1 represents an NCP.

opEquipmentList
Included only if vertex 1 represents the local VTAM host.

softwareList
Included only if vertex 1 represents the local VTAM host.

sysplexInfo
Included only if vertex 1 represents the local VTAM host.

appnNodeCapabilities
Included only if vertex 1 represents the local VTAM host
and the VTAM node is an appnNN or an interchangeNode.

extendedAppnNodeCapabilities
Included only if vertex 1 represents the local VTAM host
and the VTAM node is an appnNN or an interchangeNode.

subareaLimit
Included only if vertex 1 represents a subarea node, which
is a t5Node, t4Node, interchangeNode, or
migrationDataHost.

subareaAddress
Included only if vertex 1 represents a subarea node, which
is a t5Node, t4Node, interchangeNode, or
migrationDataHost.

snaLocalTopo

192 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

puName
Included only if vertex 1 represents the local VTAM host,
and VTAM is subarea-capable.

gatewayNode
Included only if vertex 1 represents an NCP, and the NCP
is gateway-capable.

gatewaySSCP
Included only if vertex 1 represents the local VTAM host,
and VTAM is gateway-capable.

interconnectedNetIds
Included only if vertex 1 represents an NCP, and the NCP
is gateway-capable.

moreInfo
Included only if a port object is to be reported in vertex 1 and is
followed by a ManagementExtension that contains the port object.

identifier
Object identifier for the objectStuffInMoreInfoParm, which
identifies the syntax for this ManagementExtension.

information
Port data in the ManagementExtension, which contains the
following fields:

object Object instance name of the port to be reported.
VTAM always reports the distinguishedName form
of object instance name.

class Object identifier (OI) representing the port object
class.

states String of characters representing the OSI state of
the port. For a list of OSI states, refer to “OSI
Object States” on page 155.

info Set of attributes providing data about the port. Not
all attributes appear in all instances of port objects.
The list of all possible attributes is:

dependencies
Always included.

adapterNumbers
Included only if the snapshot type is
appnOnly.

connectionId
Included only if the snapshot type is
appnPlusSubarea.

adapterAddresses
Always included.

lineType
Always included.

dlcName
Always included.

snaLocalTopo

Chapter 15. VTAM Topology Monitoring 193

relatedAdapter
Always included.

The structure of the short form of vertex 1 is defined as follows:

vertex1
Identifies the beginning of vertex 1. The lower level fields in vertex 1 are:

object Object instance name of the node represented by vertex 1. VTAM
always returns the distinguishedName form of object instance
name.

class Object identifier (OI) representing the object class of the reported
node.

states String of characters representing the OSI state of the vertex 1 node
only if a state change occurred for the vertex 1 node. For a list of
OSI states, refer to “OSI Object States” on page 155.

info Set of attributes providing data about the vertex 1 node. Not all
attributes appear in all instances of vertex 1. The list of all possible
attributes is:

gatewayNode
Included only if vertex 1 represents an NCP and VTAM has
discovered that the NCP is gateway-capable.

interconnectedNetIds
Included only if vertex 1 represents an NCP and VTAM has
discovered that the NCP is gateway-capable.

moreInfo
Included only if a port object is to be reported in vertex 1 and is
followed by a ManagementExtension that contains the port object.
The form included here is the short form of the port.

identifier
Object identifier for the objectStuffInMoreInfoParm, which
identifies the syntax for this ManagementExtension.

information
Port data in the ManagementExtension, which contains the
following fields:

object Object instance name of the port to be reported.
VTAM always reports the distinguishedName form
of object instance name.

class Object identifier (OI) representing the port object
class.

states String of characters representing the OSI state of
the port. For a list of OSI states, refer to “OSI
Object States” on page 155.

info Set of attributes providing data about the port. Not
all attributes appear in all instances of port objects.
The list of all possible attributes is:

adapterAddresses
Included only to report an attribute value
change.

snaLocalTopo

194 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

relatedAdapter
Included only to report an attribute value
change.

reason
Included only if the port is reported as deleted.

reason
Included only if the vertex 1 node is being reported as deleted.

Note that although the previous lists show the long form of the port in the long form
of vertex 1 and the short form of the port in the short form of vertex 1, it is possible
to have the long form of port contained in the short form of vertex 1. For example, if
a node was already reported in a previous vertex 1 (long form) and was reported
again (short form), but this time the vertex 1 included a port that has not yet been
reported, the port is the long form. The VTAM topology agent never reports the
short form of a port in a long form of vertex 1.

Vertex 2 for snaLocalTopo does not have a long form and a short form; there is only
one form. The structure of vertex 2 is as follows:

vertex2
Identify the beginning of vertex 2. The lower level fields in vertex 2 are:

object Object instance name of the node represented by vertex 2. VTAM
always returns the distinguishedName form of object instance
name.

class Object identifier (OI) representing the object class of the reported
node.

VTAM might not report the true object class of composite nodes
such as interchange nodes. When reporting subarea connections,
vertex2 object class is always t5Node or t4Node.

reason
Included only if the vertex 2 node is being reported as deleted.

The structure of endpoint 1 for snaLocalTopo is variable, depending on what objects
are reported. Endpoint 1 can contain both a transmission group object and a
logicalLink object, or it can contain just a logicalLink object. Endpoint 1 never
contains only a transmission group object. If both a TG and a logicalLink are
reported, the TG is reported as the first and primary object in endpoint 1. If only a
logicalLink is reported, the logicalLink is reported as the primary object in endpoint
1.

The structure of endpoint 1 is shown in two parts; first, the structure of the TG
object is shown, including where the logicalLink object fits into the structure. Then
the logicalLink object is shown with a structure used for either the primary or
secondary object in endpoint 1.

The TG object structure follows:

object Object instance name of the TG to be reported. VTAM always reports the
distinguishedName form of object instance name.

class Object identifier (OI) representing either the appnTransmissionGroup or the
subareaTransmissionGroup object class.

states String of characters representing the OSI state of the TG; this field is

snaLocalTopo

Chapter 15. VTAM Topology Monitoring 195

included only for appnTransmissionGroup objects. For a list of OSI states,
refer to “OSI Object States” on page 155.

info Set of attributes providing data about the TG. Not all attributes appear in all
instances of TG objects. The info label and value are included only for
appnTransmissionGroup objects. The list of all possible attributes is:

cp-cpSessionSupport
Included only for appnTransmissionGroup objects.

appnTGCapabilities
Included only for appnTransmissionGroup objects.

moreInfo
Always included for a TG object and is followed by a ManagementExtension
that contains the logicalLink object.

identifier
Object identifier for the objectStuffInMoreInfoParm, which is a
parameter that identifies the syntax for this ManagementExtension.

information
logicalLink data in the ManagementExtension. At this point the
logicalLink data described below is inserted.

reason
Included only if the TG is being reported as deleted.

The logical link object structure follows:

object Object instance name of the logicalLink to be reported. VTAM always
reports the distinguishedName form of object instance name.

class Object identifier (OI) representing the logicalLink object class.

states String of characters representing the OSI state of the logicalLink. For a list
of OSI states, refer to “OSI Object States” on page 155.

info Set of attributes providing data about the logicalLink. Not all attributes
appear in all instances of logicalLink objects. The list of all possible
attributes is:

dependencies
Included for initial data, object creation updates, state change
updates for switched PUs, and attribute value change updates
caused by line filtering through the MODIFY VTAMTOPO command.

connectionId
Included only for native ATM connections and only if the snapshot
type is appnPlusSubarea, for initial data and object creation updates.

portId Reported for initial data, object creation updates, state change
updates for switched PUs, and selected attribute value change
updates; however, this attribute might be suppressed if it refers to a
switched logical line and switched logical lines are being
suppressed (because of how the VTAMTOPO filtering option is
specified).

partnerConnection
Included only if the resource represented by this logicalLink is a link
station and if the partner logicalLink information is available.
Included for initial data, object creation updates, and state change
updates.

snaLocalTopo

196 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

adjacentLinkStationAddress
Included if the associated line is a logical token ring line, a frame
relay line, an XCA line, an XCF line, an ATM line, or an SDLC line
with a polling address. The attribute might also be included for PUs
that have the ADDR keyword coded on the PU definition statement.
The attribute is included for initial data, object creation updates,
state change updates, and selected attribute value change updates.

adjacentNodeType
Included for initial data, object creation updates, and state change
updates.

dlurLocalLsAddress
Included when a DLUR supports downstream PUs. LogicalLink
reports local addressing information.

dlurName
Included only if the PU is attached to VTAM through the dependent
LU server and dependent LU requester capabilities. Included for
initial data, object creation updates, and state change updates.

reason
Included only if the logicalLink is being reported as deleted.

snaLocalTopo Snapshot Example
The following example of snaLocalTopo snapshot response data shows only the
first linked-reply message of the initial data; the sample configuration is the VTAM
topology agent host (SSCP1A) connected to an active NCP (NCP3AB8). After the
example string, the contents of the message are described in further detail.

msg CMIP-1.ROIVapdu (invokeID
131074, linked-ID 196612, operation-value 2, arg
ument (actionResult (managedObjectClass 1.3.18.0.
0.2152, managedObjectInstance (distinguishedName
(RelativeDistinguishedName (AttributeValueAsserti
on (attributeType 1.3.18.0.2.4.6, attributeValue
"NETA")), RelativeDistinguishedName (AttributeVal
ueAssertion (attributeType 1.3.18.0.0.2032, attri
buteValue "SSCP1A")), RelativeDistinguishedName (
AttributeValueAssertion (attributeType 1.3.18.0.0
.2216, attributeValue (string "SnaLocalTopology")
)))), actionReply (actionType 1.3.18.0.0.2222, ac
tionReplyInfo ((vertex1 (object (distinguishedNam
e (RelativeDistinguishedName (AttributeValueAsser
tion (attributeType 1.3.18.0.2.4.6, attributeValu
e "NETA")), RelativeDistinguishedName (AttributeV
alueAssertion (attributeType 1.3.18.0.0.2032, att
ributeValue "SSCP1A")))), class 1.3.18.0.0.1826,
states 01010100000000, info (Attribute (attribute
Id 1.3.14.2.2.4.33, attributeValue (ObjectInstanc
e (distinguishedName (RelativeDistinguishedName (
AttributeValueAssertion (attributeType 1.3.18.0.2
.4.8, attributeValue "ORGREG")), RelativeDistingu
ishedName (AttributeValueAssertion (attributeType
2.5.4.10, attributeValue "IBM")), RelativeDistin
guishedName (AttributeValueAssertion (attributeTy
pe 1.3.14.2.2.4.45, attributeValue "9021")), Rela
tiveDistinguishedName (AttributeValueAssertion (a
ttributeType 1.3.14.2.2.4.50, attributeValue "032
082")))))), Attribute (attributeId 1.3.14.2.2.4.5
3, attributeValue (ObjectInstance (distinguishedN
ame (RelativeDistinguishedName (AttributeValueAss
ertion (attributeType 1.3.18.0.2.4.8, attributeVa
lue "ORGREG")), RelativeDistinguishedName (Attrib

snaLocalTopo

Chapter 15. VTAM Topology Monitoring 197

uteValueAssertion (attributeType 2.5.4.10, attrib
uteValue "IBM")), RelativeDistinguishedName (Attr
ibuteValueAssertion (attributeType 0.0.13.3100.0.
7.38, attributeValue (pString "ACF/VTAM.4.3.0")))
)))), Attribute (attributeId 1.3.18.0.0.2296, att
ributeValue "SYSPLEX"), Attribute (attributeId 1.
3.18.0.0.1940, attributeValue 3340), Attribute (a
ttributeId 1.3.18.0.0.1970, attributeValue 0000),
Attribute (attributeId 1.3.18.0.0.2036, attribut
eValue 511), Attribute (attributeId 1.3.18.0.0.20
35, attributeValue 1), Attribute (attributeId 1.3
.18.0.0.2013, attributeValue "ISTPUS"), Attribute
(attributeId 1.3.18.0.0.1972, attributeValue TRU
E)), moreInfo (ManagementExtension (identifier 1.
3.18.0.0.2162, information (object (distinguished
Name (RelativeDistinguishedName (AttributeValueAs
sertion (attributeType 1.3.18.0.2.4.6, attributeV
alue "NETA")), RelativeDistinguishedName (Attribu
teValueAssertion (attributeType 1.3.18.0.0.2032,
attributeValue "SSCP1A")), RelativeDistinguishedN
ame (AttributeValueAssertion (attributeType 1.3.1
8.0.0.2142, attributeValue "0321-L")))), class 1.
3.18.0.0.2089, states 01010100000000, info (Attri
bute (attributeId 1.3.18.0.0.2194, attributeValue
(dependents (and (Dependents (item (distinguishe
dName (RelativeDistinguishedName (AttributeValueA
ssertion (attributeType 1.3.18.0.2.4.6, attribute
Value "NETA")), RelativeDistinguishedName (Attrib
uteValueAssertion (attributeType 1.3.18.0.0.2032,
attributeValue "SSCP1A")), RelativeDistinguished
Name (AttributeValueAssertion (attributeType 1.3.
18.0.0.2272, attributeValue "NCP.ISTPUS"))))), De
pendents (item (distinguishedName (RelativeDistin
guishedName (AttributeValueAssertion (attributeTy
pe 1.3.18.0.2.4.6, attributeValue "NETA")), Relat
iveDistinguishedName (AttributeValueAssertion (at
tributeType 1.3.18.0.0.2032, attributeValue "SSCP
1A"))))))))), Attribute (attributeId 2.9.3.5.7.1,
attributeValue "0321"), Attribute (attributeId 1
.3.18.0.0.2117, attributeValue ()), Attribute (at
tributeId 1.3.18.0.0.2131, attributeValue nonswit
ched), Attribute (attributeId 1.3.18.0.0.2127, at
tributeValue "CHANNEL"), Attribute (attributeId 1
.3.18.0.0.2244, attributeValue (noInfo NULL))))))
), vertex2 (object (distinguishedName (RelativeDi
stinguishedName (AttributeValueAssertion (attribu
teType 1.3.18.0.2.4.6, attributeValue "NETA")), R
elativeDistinguishedName (AttributeValueAssertion
(attributeType 1.3.18.0.0.2032, attributeValue "
NCP3AB8")))), class 1.3.18.0.0.1844), endpoint1 (
object (distinguishedName (RelativeDistinguishedN
ame (AttributeValueAssertion (attributeType 1.3.1
8.0.2.4.6, attributeValue "NETA")), RelativeDisti
nguishedName (AttributeValueAssertion (attributeT
ype 1.3.18.0.0.2032, attributeValue "SSCP1A")), R
elativeDistinguishedName (AttributeValueAssertion
(attributeType 1.3.18.0.0.2044, attributeValue "
1.1.NETA.3.NCP3AB8")))), class 1.3.18.0.0.1840, m
oreInfo (ManagementExtension (identifier 1.3.18.0
.0.2162, information (object (distinguishedName (
RelativeDistinguishedName (AttributeValueAssertio
n (attributeType 1.3.18.0.2.4.6, attributeValue "
NETA")), RelativeDistinguishedName (AttributeValu
eAssertion (attributeType 1.3.18.0.0.2032, attrib
uteValue "SSCP1A")), RelativeDistinguishedName (A
ttributeValueAssertion (attributeType 1.3.18.0.0.
2133, attributeValue "0321-S")))), class 1.3.18.0

snaLocalTopo

198 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

.0.2085, states 01010100000000, info (Attribute (
attributeId 1.3.18.0.0.2194, attributeValue (depe
ndents (and (Dependents (item (distinguishedName
(RelativeDistinguishedName (AttributeValueAsserti
on (attributeType 1.3.18.0.2.4.6, attributeValue
"NETA")), RelativeDistinguishedName (AttributeVal
ueAssertion (attributeType 1.3.18.0.0.2032, attri
buteValue "SSCP1A")), RelativeDistinguishedName (
AttributeValueAssertion (attributeType 1.3.18.0.0
.2142, attributeValue "0321-L"))))))))), Attribut
e (attributeId 1.3.18.0.0.2142, attributeValue "0
321-L"), Attribute (attributeId 1.3.18.0.0.2236,
attributeValue (object (distinguishedName (Relati
veDistinguishedName (AttributeValueAssertion (att
ributeType 1.3.18.0.2.4.6, attributeValue "NETA")
), RelativeDistinguishedName (AttributeValueAsser
tion (attributeType 1.3.18.0.0.2032, attributeVal
ue "NCP3AB8")), RelativeDistinguishedName (Attrib
uteValueAssertion (attributeType 1.3.18.0.0.2133,
attributeValue "PU321A")))))), Attribute (attrib
uteId 1.3.18.0.0.2121, attributeValue t4))))))),
(vertex1 (object (distinguishedName (RelativeDist
inguishedName (AttributeValueAssertion (attribute
Type 1.3.18.0.2.4.6, attributeValue "NETA")), Rel
ativeDistinguishedName (AttributeValueAssertion (
attributeType 1.3.18.0.0.2032, attributeValue "SS
CP1A")), RelativeDistinguishedName (AttributeValu
eAssertion (attributeType 1.3.18.0.0.2032, attrib
uteValue "NCP3AB8")))), class 1.3.18.0.0.1844, st
ates 01010100000000, info (Attribute (attributeId
1.3.18.0.0.2194, attributeValue (dependents (and
(Dependents (item (distinguishedName (RelativeDi
stinguishedName (AttributeValueAssertion (attribu
teType 1.3.18.0.2.4.6, attributeValue "NETA")), R
elativeDistinguishedName (AttributeValueAssertion
(attributeType 1.3.18.0.0.2032, attributeValue "
SSCP1A")), RelativeDistinguishedName (AttributeVa
lueAssertion (attributeType 1.3.18.0.0.2272, attr
ibuteValue "NCP.NCP3AB8"))))), Dependents (item (
distinguishedName (RelativeDistinguishedName (Att
ributeValueAssertion (attributeType 1.3.18.0.2.4.
6, attributeValue "NETA")), RelativeDistinguished
Name (AttributeValueAssertion (attributeType 1.3.
18.0.0.2032, attributeValue "SSCP1A"))))))))), At
tribute (attributeId 1.3.18.0.0.2036, attributeVa
lue 255), Attribute (attributeId 1.3.18.0.0.2035,
attributeValue 3)), moreInfo (ManagementExtensio
n (identifier 1.3.18.0.0.2162, information (objec
t (distinguishedName (RelativeDistinguishedName (
AttributeValueAssertion (attributeType 1.3.18.0.2
.4.6, attributeValue "NETA")), RelativeDistinguis
hedName (AttributeValueAssertion (attributeType 1
.3.18.0.0.2032, attributeValue "SSCP1A")), Relati
veDistinguishedName (AttributeValueAssertion (att
ributeType 1.3.18.0.0.2142, attributeValue "LN3A6
")))), class 1.3.18.0.0.2089, states 010101000000
00, info (Attribute (attributeId 1.3.18.0.0.2194,
attributeValue (dependents (and (Dependents (ite
m (distinguishedName (RelativeDistinguishedName (
AttributeValueAssertion (attributeType 1.3.18.0.2
.4.6, attributeValue "NETA")), RelativeDistinguis
hedName (AttributeValueAssertion (attributeType 1
.3.18.0.0.2032, attributeValue "SSCP1A")), Relati
veDistinguishedName (AttributeValueAssertion (att
ributeType 1.3.18.0.0.2272, attributeValue "NCP.N
CP3AB8"))))), Dependents (item (distinguishedName
(RelativeDistinguishedName (AttributeValueAssert

snaLocalTopo

Chapter 15. VTAM Topology Monitoring 199

ion (attributeType 1.3.18.0.2.4.6, attributeValue
"NETA")), RelativeDistinguishedName (AttributeVa
lueAssertion (attributeType 1.3.18.0.0.2032, attr
ibuteValue "SSCP1A")), RelativeDistinguishedName
(AttributeValueAssertion (attributeType 1.3.18.0.
0.2032, attributeValue "NCP3AB8"))))))))), Attrib
ute (attributeId 2.9.3.5.7.1, attributeValue "030
3"), Attribute (attributeId 1.3.18.0.0.2117, attr
ibuteValue ()), Attribute (attributeId 1.3.18.0.0
.2131, attributeValue nonswitched), Attribute (at
tributeId 1.3.18.0.0.2127, attributeValue "SDLC")
, Attribute (attributeId 1.3.18.0.0.2244, attribu
teValue (noInfo NULL))))))), endpoint1 (object (d
istinguishedName (RelativeDistinguishedName (Attr
ibuteValueAssertion (attributeType 1.3.18.0.2.4.6
, attributeValue "NETA")), RelativeDistinguishedN
ame (AttributeValueAssertion (attributeType 1.3.1
8.0.0.2032, attributeValue "SSCP1A")), RelativeDi
stinguishedName (AttributeValueAssertion (attribu
teType 1.3.18.0.0.2133, attributeValue "P3A3274E"
)))), class 1.3.18.0.0.2085, states 0101010000000
0, info (Attribute (attributeId 1.3.18.0.0.2194,
attributeValue (dependents (and (Dependents (item
(distinguishedName (RelativeDistinguishedName (A
ttributeValueAssertion (attributeType 1.3.18.0.2.
4.6, attributeValue "NETA")), RelativeDistinguish
edName (AttributeValueAssertion (attributeType 1.
3.18.0.0.2032, attributeValue "SSCP1A")), Relativ
eDistinguishedName (AttributeValueAssertion (attr
ibuteType 1.3.18.0.0.2272, attributeValue "NCP.NC
P3AB8"))))), Dependents (item (distinguishedName
(RelativeDistinguishedName (AttributeValueAsserti
on (attributeType 1.3.18.0.2.4.6, attributeValue
"NETA")), RelativeDistinguishedName (AttributeVal
ueAssertion (attributeType 1.3.18.0.0.2032, attri
buteValue "SSCP1A")), RelativeDistinguishedName (
AttributeValueAssertion (attributeType 1.3.18.0.0
.2142, attributeValue "LN3A6"))))))))), Attribute
(attributeId 1.3.18.0.0.2142, attributeValue "LN
3A6"), Attribute (attributeId 1.3.18.0.0.2236, at
tributeValue (noInfo NULL)), Attribute (attribute
Id 1.3.18.0.0.2119, attributeValue (lsAddr C2)),
Attribute (attributeId 1.3.18.0.0.2121, attribute
Value t20)))), (vertex1 (object (distinguishedNam
e (RelativeDistinguishedName (AttributeValueAsser
tion (attributeType 1.3.18.0.2.4.6, attributeValu
e "NETA")), RelativeDistinguishedName (AttributeV
alueAssertion (attributeType 1.3.18.0.0.2032, att
ributeValue "SSCP1A")), RelativeDistinguishedName
(AttributeValueAssertion (attributeType 1.3.18.0
.0.2032, attributeValue "NCP3AB8")))), class 1.3.
18.0.0.1844), vertex2 (object (distinguishedName
(RelativeDistinguishedName (AttributeValueAsserti
on (attributeType 1.3.18.0.2.4.6, attributeValue
"NETA")), RelativeDistinguishedName (AttributeVal
ueAssertion (attributeType 1.3.18.0.0.2032, attri
buteValue "P3A4956G")))), class 1.3.18.0.0.1827),
endpoint1 (object (distinguishedName (RelativeDi
stinguishedName (AttributeValueAssertion (attribu
teType 1.3.18.0.2.4.6, attributeValue "NETA")), R
elativeDistinguishedName (AttributeValueAssertion
(attributeType 1.3.18.0.0.2032, attributeValue "
SSCP1A")), RelativeDistinguishedName (AttributeVa
lueAssertion (attributeType 1.3.18.0.0.2044, attr
ibuteValue "0.NETA.P3A4956G")))), class 1.3.18.0.
0.1823, states 010101000000FF, info (Attribute (a
ttributeId 1.3.18.0.0.1958, attributeValue FALSE)

snaLocalTopo

200 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

, Attribute (attributeId 1.3.18.0.0.1941, attribu
teValue 00)), moreInfo (ManagementExtension (iden
tifier 1.3.18.0.0.2162, information (object (dist
inguishedName (RelativeDistinguishedName (Attribu
teValueAssertion (attributeType 1.3.18.0.2.4.6, a
ttributeValue "NETA")), RelativeDistinguishedName
(AttributeValueAssertion (attributeType 1.3.18.0
.0.2032, attributeValue "SSCP1A")), RelativeDisti
nguishedName (AttributeValueAssertion (attributeT
ype 1.3.18.0.0.2133, attributeValue "P3A4956G")))
), class 1.3.18.0.0.2085, states 01010100000000,
info (Attribute (attributeId 1.3.18.0.0.2194, att
ributeValue (dependents (and (Dependents (item (d
istinguishedName (RelativeDistinguishedName (Attr
ibuteValueAssertion (attributeType 1.3.18.0.2.4.6
, attributeValue "NETA")), RelativeDistinguishedN
ame (AttributeValueAssertion (attributeType 1.3.1
8.0.0.2032, attributeValue "SSCP1A")), RelativeDi
stinguishedName (AttributeValueAssertion (attribu
teType 1.3.18.0.0.2272, attributeValue "NCP.NCP3A
B8"))))), Dependents (item (distinguishedName (Re
lativeDistinguishedName (AttributeValueAssertion
(attributeType 1.3.18.0.2.4.6, attributeValue "NE
TA")), RelativeDistinguishedName (AttributeValueA
ssertion (attributeType 1.3.18.0.0.2032, attribut
eValue "SSCP1A")), RelativeDistinguishedName (Att
ributeValueAssertion (attributeType 1.3.18.0.0.21
42, attributeValue "LN3A6"))))))))), Attribute (a
ttributeId 1.3.18.0.0.2142, attributeValue "LN3A6
"), Attribute (attributeId 1.3.18.0.0.2236, attri
buteValue (noInfo NULL)), Attribute (attributeId
1.3.18.0.0.2119, attributeValue (lsAddr C4)), Att
ribute (attributeId 1.3.18.0.0.2121, attributeVal
ue len))))))), (vertex1 (object (distinguishedNam
e (RelativeDistinguishedName (AttributeValueAsser
tion (attributeType 1.3.18.0.2.4.6, attributeValu
e "NETA")), RelativeDistinguishedName (AttributeV
alueAssertion (attributeType 1.3.18.0.0.2032, att
ributeValue "SSCP1A")), RelativeDistinguishedName
(AttributeValueAssertion (attributeType 1.3.18.0
.0.2032, attributeValue "NCP3AB8")))), class 1.3.
18.0.0.1844, moreInfo (ManagementExtension (ident
ifier 1.3.18.0.0.2162, information (object (disti
nguishedName (RelativeDistinguishedName (Attribut
eValueAssertion (attributeType 1.3.18.0.2.4.6, at
tributeValue "NETA")), RelativeDistinguishedName
(AttributeValueAssertion (attributeType 1.3.18.0.
0.2032, attributeValue "SSCP1A")), RelativeDistin
guishedName (AttributeValueAssertion (attributeTy
pe 1.3.18.0.0.2142, attributeValue "LN3A1")))), c
lass 1.3.18.0.0.2089, states 01010100000000, info
(Attribute (attributeId 1.3.18.0.0.2194, attribu
teValue (dependents (and (Dependents (item (disti
nguishedName (RelativeDistinguishedName (Attribut
eValueAssertion (attributeType 1.3.18.0.2.4.6, at
tributeValue "NETA")), RelativeDistinguishedName
(AttributeValueAssertion (attributeType 1.3.18.0.
0.2032, attributeValue "SSCP1A")), RelativeDistin
guishedName (AttributeValueAssertion (attributeTy
pe 1.3.18.0.0.2272, attributeValue "NCP.NCP3AB8")
)))), Dependents (item (distinguishedName (Relati
veDistinguishedName (AttributeValueAssertion (att
ributeType 1.3.18.0.2.4.6, attributeValue "NETA")
), RelativeDistinguishedName (AttributeValueAsser
tion (attributeType 1.3.18.0.0.2032, attributeVal
ue "SSCP1A")), RelativeDistinguishedName (Attribu
teValueAssertion (attributeType 1.3.18.0.0.2032,

snaLocalTopo

Chapter 15. VTAM Topology Monitoring 201

attributeValue "NCP3AB8"))))))))), Attribute (att
ributeId 2.9.3.5.7.1, attributeValue "0305"), Att
ribute (attributeId 1.3.18.0.0.2117, attributeVal
ue ()), Attribute (attributeId 1.3.18.0.0.2131, a
ttributeValue nonswitched), Attribute (attributeI
d 1.3.18.0.0.2127, attributeValue "SDLC"), Attrib
ute (attributeId 1.3.18.0.0.2244, attributeValue
(noInfo NULL))))))), endpoint1 (object (distingui
shedName (RelativeDistinguishedName (AttributeVal
ueAssertion (attributeType 1.3.18.0.2.4.6, attrib
uteValue "NETA")), RelativeDistinguishedName (Att
ributeValueAssertion (attributeType 1.3.18.0.0.20
32, attributeValue "SSCP1A")), RelativeDistinguis
hedName (AttributeValueAssertion (attributeType 1
.3.18.0.0.2133, attributeValue "P3A3767A")))), cl
ass 1.3.18.0.0.2085, states 01010100000000, info
(Attribute (attributeId 1.3.18.0.0.2194, attribut
eValue (dependents (and (Dependents (item (distin
guishedName (RelativeDistinguishedName (Attribute
ValueAssertion (attributeType 1.3.18.0.2.4.6, att
ributeValue "NETA")), RelativeDistinguishedName (
AttributeValueAssertion (attributeType 1.3.18.0.0
.2032, attributeValue "SSCP1A")), RelativeDisting
uishedName (AttributeValueAssertion (attributeTyp
e 1.3.18.0.0.2272, attributeValue "NCP.NCP3AB8"))
))), Dependents (item (distinguishedName (Relativ
eDistinguishedName (AttributeValueAssertion (attr
ibuteType 1.3.18.0.2.4.6, attributeValue "NETA"))
, RelativeDistinguishedName (AttributeValueAssert
ion (attributeType 1.3.18.0.0.2032, attributeValu
e "SSCP1A")), RelativeDistinguishedName (Attribut
eValueAssertion (attributeType 1.3.18.0.0.2142, a
ttributeValue "LN3A1"))))))))), Attribute (attrib
uteId 1.3.18.0.0.2142, attributeValue "LN3A1"), A
ttribute (attributeId 1.3.18.0.0.2236, attributeV
alue (noInfo NULL)), Attribute (attributeId 1.3.1
8.0.0.2119, attributeValue (lsAddr C2)), Attribut
e (attributeId 1.3.18.0.0.2121, attributeValue t1
)))))))))

The linked-reply in the example, identified by the operation value of 2, contains a
set of four instances of the (v1,v2,e1) sequence. Not all instances of the sequence
contain all fields of the sequence. The following is a summary of the contents of the
four sequences:

First sequence: (v1,v2,e1)
vertex 1 : NETA;SSCP1A (local VTAM host)

class : interchangeNode
states :

Operational State : Enabled
Usage State : Active
Administrative State : Unlocked
Availability Status : No Status
Procedural Status : No Status
Unknown Status : False
Native Status : Active

info :
opEquipmentList : ORGREG.IBM.9021.032082
softwareList : ORGREG.IBM.ACF/VTAM.4.3.0
sysplexInfo : SYSPLEX
appnNodeCapabilities : 3340
extAppnNodeCap : 0000
subareaLimit : 511
subareaAddress : 1
puName : ISTPUS

snaLocalTopo

202 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

gatewaySSCP : TRUE
moreInfo :

NETA;SSCP1A;0321-L
class : port
states :

Operational State : Enabled
Usage State : Active
Administrative State : Unlocked
Availability Status : No Status
Procedural Status : No Status
Unknown Status : False
Native Status : Active

info :
connectionId : 0321
adapterAddresses : ()
lineType : nonswitched
dlcName : channel
relatedAdapter : NOINFO NULL
dependencies : NETA;SSCP1A;NCP.ISTPUS,

NETA;SSCP1A

vertex 2 : NETA;SSCP1A;NCP3AB8 (locally owned NCP)
class : t4Node

endpoint 1: NETA;SSCP1A;1.1.NETA.3.NCP3AB8
class : subareaTransmissionGroup

NETA;SSCP1A;0321-S
class : logicalLink
states :

Operational State : Enabled
Usage State : Active
Administrative State : Unlocked
Availability Status : No Status
Procedural Status : No Status
Unknown Status : False
Native Status : Active

info :
portId : 0321-L
partnerConnection : NETA;NCP3AB8;PU321A
adjacentNodeType : t4 (type 4)
dependencies : NETA;SSCP1A;0321-L

This sequence represents the connection from the local VTAM host to a locally
owned NCP. This sequence shows:
v The long form of vertex 1 (the attributes for the local VTAM host)
v The long form of the port in vertex 1 (channel data)
v The only form of vertex 2 (showing the NCP)
v The form of endpoint 1 containing both a subareaTransmissionGroup and a

logicalLink.

Second sequence: (v1,e1)
vertex 1 : NETA;SSCP1A;NCP3AB8 (locally owned NCP)

class : t4Node
states :

Operational State : Enabled
Usage State : Active
Administrative State : Unlocked
Availability Status : No Status
Procedural Status : No Status
Unknown Status : False
Native Status : Active

info :
subareaLimit : 255
subareaAddress : 3

snaLocalTopo

Chapter 15. VTAM Topology Monitoring 203

dependencies : NETA;SSCP1A;NCP.NCP3AB8
NETA;SSCP1A

moreInfo :
NETA;SSCP1A;LN3A6 (SDLC line in NCP major node)

class : port
states :

Operational State : Enabled
Usage State : Active
Administrative State : Unlocked
Availability Status : No Status
Procedural Status : No Status
Unknown Status : False
Native Status : Active

info :
connectionId : 0303
adapterAddresses : ()
lineType : nonswitched
dlcName : SDLC
relatedAdapter : NOINFO NULL
dependencies : NETA;SSCP1A;NCP.NCP3AB8,

NETA;SSCP1A;NCP3AB8

endpoint 1: NETA;SSCP1A;P3A3274E (PU defined under LN3A6)
class : logicalLink
states :

Operational State : Enabled
Usage State : Active
Administrative State : Unlocked
Availability Status : No Status
Procedural Status : No Status
Unknown Status : False
Native Status : Active

info :
portId : LN3A6
partnerConnection : NOINFO NULL
adjacentLinkStationAddress : LSADDR C2
adjacentNodeType : t20 (type 2.0)
dependencies : NETA;SSCP1A;NCP.NCP3AB8,

NETA;SSCP1A;LN3A6

This sequence begins the reporting of the NCP resources; the first line defined in
the NCP major node is reported, along with the first of two PUs defined under that
line. This sequence shows:
v The long form of vertex 1 (the attributes for the NCP)
v The long form of the port in vertex 1 (SDLC line data)
v The line / PU are being used for a connection to a type 2.0 node; VTAM does

not report type 2.0 nodes in vertex 2.
v The form of endpoint 1 containing only a logicalLink; there is no TG information

because the contacted node is type 2.0.

Third sequence: (v1,v2,e1)
vertex 1 : NETA;SSCP1A;NCP3AB8 (locally owned NCP)

class : t4Node

vertex 2 : NETA;P3A4956G
class : lenNode

endpoint 1: NETA;SSCP1A;0.NETA.P3A4956G
class : appnTransmissionGroup
states :

Operational State : Enabled
Usage State : Active
Administrative State : Unlocked
Availability Status : No Status

snaLocalTopo

204 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Procedural Status : No Status
Unknown Status : False
Native Status : N/A

info :
cp-cpSessionSupport : FALSE
appnTGcapabilities : 00

NETA;SSCP1A;P3A4956G (PU defined under LN3A6)
class : logicalLink
states :

Operational State : Enabled
Usage State : Active
Administrative State : Unlocked
Availability Status : No Status
Procedural Status : No Status
Unknown Status : False
Native Status : Active

info :
portId : LN3A6
partnerConnection : NOINFO NULL
adjacentLinkStationAddress : LSADDR C4
adjacentNodeType : len
dependencies : NETA;SSCP1A;NCP.NCP3AB8,

NETA;SSCP1A;LN3A6

This sequence continues the reporting of the NCP resources by reporting the
second PU defined under the previously reported line, which is used for a
connection to a LEN node. This sequence shows:

v The short form of vertex 1 (long form of NCP already reported)

v The port data for LN3A6 was already reported, so the port is omitted from vertex
1

v Vertex 2 contains the contacted LEN node.

v The form of endpoint 1 containing an APPN TG and a logicalLink. The port
associated with this PU, although not provided in vertex 1, can be identified by
the portId attribute of the logicalLink.

Fourth sequence: (v1,e1)
vertex 1 : NETA;SSCP1A;NCP3AB8 (locally owned NCP)

class : t4Node
moreInfo :

NETA;SSCP1A;LN3A1 (SDLC line in NCP major node)
class : port
states :

Operational State : Enabled
Usage State : Active
Administrative State : Unlocked
Availability Status : No Status
Procedural Status : No Status
Unknown Status : False
Native Status : Active

info :
connectionId : 0305
adapterAddresses : ()
lineType : nonswitched
dlcName : SDLC
relatedAdapter : NOINFO NULL
dependencies : NETA;SSCP1A;NCP.NCP3AB8,

NETA;SSCP1A;NCP3AB8

endpoint 1: NETA;SSCP1A;P3A3767A (PU defined under LN3A1)
class : logicalLink
states :

snaLocalTopo

Chapter 15. VTAM Topology Monitoring 205

Operational State : Enabled
Usage State : Active
Administrative State : Unlocked
Availability Status : No Status
Procedural Status : No Status
Unknown Status : False
Native Status : Active

info :
portId : LN3A1
partnerConnection : NOINFO NULL
adjacentLinkStationAddress : LSADDR C2
adjacentNodeType : t1 (type 1)
dependencies : NETA;SSCP1A;NCP.NCP3AB8,

NETA;SSCP1A;LN3A1

This sequence continues the reporting of the NCP resources by reporting another
line, a PU defined under the line, and a connection to a type 1 node. This sequence
shows:

v The short form of vertex 1 (long form of NCP already reported)

v The long form of port data for LN3A1 is included since it is the initial report of
LN3A1.

v The line / PU are being used for a connection to a type 1 node; VTAM does not
report connected type 1 nodes in vertex 2.

v The form of endpoint 1 containing only a logicalLink. There is no TG information
to report for a connection to a type 1 node.

Requesting and Monitoring LU Data (luCollection)
This section contains the following topics:
v “Overview”
v “Action Request” on page 207
v “Initial Data Response” on page 208
v “Update Data Response” on page 208
v “Action Termination” on page 210
v “luCollection Snapshot Data” on page 210
v “luCollection (PU) Snapshot Example” on page 211

Overview
This section describes the action that is used to request monitoring and stop
monitoring LU data for a given PU object or agent host object using the luCollection
managed object class.

Management of LUs requires that a manager application program be able to
request the names of all the LUs under a certain PU and to monitor their status.
The manager application program can use a snapshot action request against the
luCollection object to get LU information.

The VTAM agent supports two types of luCollection

1. luCollection against a specified physical unit. This form of luCollection is called
luCollection (PU) and returns all dependent LUs that are defined (either
statically or dynamically) under the PU. The physical unit must be defined at the
agent host for this command to be successful. For physical units that represent
connections to type 2.1 nodes, the independent logical units currently using the
PU as an adjacent link station (ALS) for sessions are also reported on the
luCollection snapshot response.

snaLocalTopo

206 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

2. luCollection against the agent host. This form of luCollection which does not
specify a linkName in the luCollection distinguished name is called luCollection
(Host) and returns LU resources that are associated with the VTAM agent host.
This includes:
v Application programs
v CDRSCs
v USERVARs
v Generic resources
v Local non-SNA terminals.

The reporting of all CDRSCs for luCollection (Host) can generate large amounts of
data to be processed because dynamic real CDRSCs as well as predefined
CDRSCs can be reported. With the exception of low-entry networking (LEN)
independent LUs, these CDRSCs can offer little benefit in terms of managing the
network because they represent resources that could be reported by agents at the
nodes that own the real resources represented by the CDRSCs. However, these
CDRSCs might be of interest in some environments. The user can select which
types of CDRSCs are to be included in the luCollection (Host) object reported by
the VTAM topology agent by specifying one of the following values on the
OSITOPO start option:
v ILUCDRSC: Report independent LUs only. This is the default value if not

specified.
v ALLCDRSC: Report all CDRSCs, including independent LUs.

Note: This start option does not affect the reporting of independent LUs under
luCollection (PU).

Action Request
A snapshot action request is used to request LU data from an agent node. The
action is sent as an m-Action-Confirmed operation.

The manager application program can request that any future updates to the
luCollection object be returned, as they occur. The LU data is requested without
updates by specifying the oneTimeOnly value in the request. The LU data and any
future updates can be requested by specifying the ongoing value in the request.

The following example shows a request to the target PU P3A3274A. The following
special identifiers are used in the request:
1.3.18.0.0.1811

luCollection
1.3.18.0.0.1815

luCollectionId
1.3.18.0.0.2222

snapshot
msg CMIP-1.ROIVapdu (invokeID 196610, operation-value 7,

argument (baseManagedObjectClass 1.3.18.0.0.1811, baseManagedObjectIns
tance (distinguishedName (RelativeDistinguishedName (AttributeValueAss
ertion (attributeType 1.3.18.0.2.4.6, attributeValue "NETA")), Relativ
eDistinguishedName (AttributeValueAssertion (attributeType 1.3.18.0.0.
2032, attributeValue "SSCP1A")), RelativeDistinguishedName (AttributeV
alueAssertion (attributeType 1.3.18.0.0.2133, attributeValue "P3A3274A
")), RelativeDistinguishedName (AttributeValueAssertion (attributeType
1.3.18.0.0.1815, attributeValue "luCollection")))), actionInfo (actio
nType 1.3.18.0.0.2222, actionInfoArg (start ongoing)))))

luCollection

Chapter 15. VTAM Topology Monitoring 207

Initial Data Response
If the oneTimeOnly snapshot action is requested, all the data (initial data only) is
returned in action linked replies. To indicate that the data for the entire set of LUs
has been returned, the agent sends an additional ROIV action linked reply that is
an empty set. Then an RORS action response is sent with only the invoke identifier
of the original action request.

If the ongoing snapshot action was requested, all the initial data is returned in
action linked replies, as for the oneTimeOnly snapshot action. To indicate that the
initial data for the entire set of LUs has been returned, the VTAM topology agent
sends an additional ROIV action linked reply that is an empty set. The VTAM
topology agent is then ready to process updates for the luCollection object.

Table 14. Reported Resources for luCollection (Host) Initial Data

Resource Object Class Notes

Non-SNA terminal LU Local terminal

Application program LU VTAM application program

CDRSC CDRSC Dynamic alias never reported. Others
affected by OSITOPO start option.

USERVAR LU Group Report USERVAR name and value

Generic resource LU Group Report generic and real members

Table 15. Reported Resources for luCollection (PU) Initial Data

Resource Object Class Notes

Dependent LU LU Logical Unit

ILU CDRSC ILU reported as CDRSC

Note: ILUs that have multiple sessions through the same PU (ALS) will only be
reported once.

Update Data Response
When the ongoing snapshot action has been issued and is currently in effect,
updates to the luCollection object results in the sending of a snapshot linked reply
with the update. In this case, only data pertinent to the subject LU flows in the
snapshot linked reply. In general, updates for luCollection (Host) are caused by the
activation or inactivation of a major node containing LU or CDRSC definitions or a
state change of these resources. Creation or deletion of USERVARs and generic
resources also cause updates.

luCollection

208 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Table 16. Resources with Reason for luCollection (Host) Update Data

Resource Reason Notes

Non-SNA LU
or application
program

Creation Major node activation

Deletion Major node inactivation

State change Resource changed state

CDRSC Creation Dynamic alias ignored

Deletion Dynamic alias ignored

State change Resource changed state

Attribute value change CDRSC has a new owning CDRM

LU Group Creation USERVAR or generic resource created

Deletion USERVAR or generic resource deleted

State change Not applicable

Attribute value change
(member added or member
deleted)

Not supported for this snapshot

Updates for luCollection (PU) are generally caused by state changes of dependent
LUs defined under a monitored PU. Also, creation or deletion of dynamic dependent
LUs as well as connection of independent LUs using the PU as an adjacent link
station (ALS) will result in updates.

Table 17. Resources with Reason for luCollection (PU) Update Data

Resource Reason Notes

Dependent LU Creation Dynamic LU created

Deletion Dynamic LU deleted

State change Dependent LU changed state

Independent
LU

Creation New session through adjacent link station

Deletion End last session through adjacent link
station

State change Not reported

Updates for the luCollection object can be merged with related updates by the
VTAM topology agent before being written to the snapshot linked replies.

A snapshot luUCollection is automatically cancelled when the PU supporting the
luCollection is deleted. luCollection updates are not merged when they are the
result of a VTAM-cancelled luCollection.

Some updates for luCollection snapshots might be reported under more than one
luCollection. For example, some updates, such as updates for independent LUs,
might be reported under several monitored PUs and also under the VTAM host. All
VTAM host luCollection updates are merged, but updates for a specific PU are not
merged if the updates represent independent LUs.

Updates that report a deleted object are not merged.

luCollection

Chapter 15. VTAM Topology Monitoring 209

Action Termination
The VTAM topology agent terminates an ongoing snapshot action for the
luCollection object under the following conditions:
v A stop snapshot action request is received.
v An error occurs during snapshot processing in VTAM.
v The association that the snapshot is using terminates.
v The target PU object associated with the luCollection object is deleted.

When a stop snapshot action request is received, the agent sends an ROIV action
linked reply for the snapshot start request that is an empty set, an RORS action
response to the snapshot start request, and an RORS action response to the
snapshot stop request.

luCollection Snapshot Data
The linked-replies for luCollection are made up of multiple instances of the following
structure:
vertex1

object --LU-related object distinguished name
class --object class
states --OSI states for this object
info

dependencies --object attribute
residentNodePointer --object attribute
nlrResidentNodePointer --object attribute
luGroupMembers --object attribute
cdrscRealLuName --object attribute
userLabel --object attribute

reason --reason for this vertex1 to be reported

The following list explains what the fields contain.

vertex1
Contains all data reported for a single LU-related object for either initial data
or for a single update for the object.

object Distinguished name of the LU-related object.

class Monitored LU-related objects are reported under the following object
classes:
v logicalUnit
v crossDomainResource
v luGroup (For USERVAR or generic resource)

states 14-character string for one of the following OSI states:
v operationalState
v usageState
v administrativeState
v availabilityStatus
v proceduralStatus
v unknownStatus
v nativeStatus

No states information is returned for luGroup

info Set of attributes for the LU-related object. Not all attributes are reported for
all object classes or are necessarily reported in the order shown in the
following tables Table 18 on page 211 and Table 19 on page 211. The
following table shows which attributes might be reported for an object class.

luCollection

210 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Table 18. Attributes for luCollection (Host) Reported Objects

Attribute LU CDRSC luGroup

dependencies X X

residentNodePointer X

nlrResidentNodePointer X

luGroupMembers X

cdrscRealLuName X

userLabel X X

tn3270DnsName X

tn3270IpAddress X

tn3270portNumber X

Table 19. Attributes for luCollection (PU) Reported Objects

Attribute LU CDRSC

dependencies X X

residentNodePointer X

nlrResidentNodePointer X

cdrscRealLuName X

reason
Indicates why the snapshot update is being sent:

Note: The reason field is omitted when the intended value is addOrUpdate.

Value Description

deleted
Object is deleted.

addOrUpdate
Object is added or changed. The default is addOrUpdate.

luCollection (PU) Snapshot Example
The following example shows an initial data response for the target PU P3A3274A.
This example shows only vertex1 data for LU L3A3278A:

msg CMIP-1.ROIVapdu
(invokeID 131075, linked-ID 196610, operation-value 2, argument (actio
nResult (managedObjectClass 1.3.18.0.0.1811, managedObjectInstance (di
stinguishedName (RelativeDistinguishedName (AttributeValueAssertion (a
ttributeType 1.3.18.0.2.4.6, attributeValue "NETA")), RelativeDistingu
ishedName (AttributeValueAssertion (attributeType 1.3.18.0.0.2032, att
ributeValue "SSCP1A")), RelativeDistinguishedName (AttributeValueAsser
tion (attributeType 1.3.18.0.0.2133, attributeValue "P3A3274A")), Rela
tiveDistinguishedName (AttributeValueAssertion (attributeType 1.3.18.0
.0.1815, attributeValue "luCollection")))), actionReply (actionType 1.
3.18.0.0.2222, actionReplyInfo ((vertex1 (object (distinguishedName (R
elativeDistinguishedName (AttributeValueAssertion (attributeType 1.3.1
8.0.2.4.6, attributeValue "NETA")), RelativeDistinguishedName (Attribu
teValueAssertion (attributeType 1.3.18.0.0.2032, attributeValue "SSCP1
A")), RelativeDistinguishedName (AttributeValueAssertion (attributeTyp
e 1.3.18.0.0.1984, attributeValue "NETA.L3A3278A")))), class 1.3.18.0.
0.1829, states 01000100000000, info (Attribute (attributeId 1.3.18.0.0
.2194, attributeValue (dependents (and (Dependents (item (distinguishe
dName (RelativeDistinguishedName (AttributeValueAssertion (attributeTy

luCollection

Chapter 15. VTAM Topology Monitoring 211

pe 1.3.18.0.2.4.6, attributeValue "NETA")), RelativeDistinguishedName
(AttributeValueAssertion (attributeType 1.3.18.0.0.2032, attributeValu
e "SSCP1A")), RelativeDistinguishedName (AttributeValueAssertion (attr
ibuteType 1.3.18.0.0.2272, attributeValue "NCP.NCP3AB8"))))), Dependen
ts (item (distinguishedName (RelativeDistinguishedName (AttributeValue
Assertion (attributeType 1.3.18.0.2.4.6, attributeValue "NETA")), Rela
tiveDistinguishedName (AttributeValueAssertion (attributeType 1.3.18.0
.0.2032, attributeValue "SSCP1A")), RelativeDistinguishedName (Attribu
teValueAssertion (attributeType 1.3.18.0.0.2133, attributeValue "NETA.
P3A3274A"))))))))), Attribute (attributeId 1.3.18.0.0.2018, attributeV
alue (distinguishedName (RelativeDistinguishedName (AttributeValueAsse
rtion (attributeType 1.3.18.0.2.4.6, attributeValue "NETA")), Relative
DistinguishedName (AttributeValueAssertion (attributeType 1.3.18.0.0.2
032, attributeValue "SSCP1A")), RelativeDistinguishedName (AttributeVa
lueAssertion (attributeType 1.3.18.0.0.2133, attributeValue "NETA.P3A3
274A"))))))))))))

The following translated initial data shows LU L3A3278A is active but not used,
under PU P3A3274A. The userLabel attribute is not reported because the LU is not
an application with an ACBNAME.

luCollection object name: NETA;SSCP1A;P3A3274A;luCollection

vertex 1: NETA;SSCP1A;NETA.L3A3278A

class : logicalUnit
states

Operational State : Enabled
Usage State : Idle
Administrative State: Unlocked
Availability Status : No Status
Procedural Status : No Status
Unknown Status : False
Native Status : Active

info
residentNodePointer : NETA;SSCP1A;NETA.P3A3274A
dependencies: : NETA;SSCP1A;NCP.NCP3AB8

NETA;SSCP1A;NETA.P3A3274A

The following example shows update data for the target PU P3A3274A. The
example includes vertex1 data for LU L3A3278A. The following special identifiers
are used in the responses:
1.3.18.0.0.1811

luCollection
1.3.18.0.0.1815

luCollectionId
1.3.18.0.0.2222

snapshot
msg CMIP-1.ROIVapdu

(invokeID 131077, linked-ID 196610, operation-value 2, argument (actio
nResult (managedObjectClass 1.3.18.0.0.1811, managedObjectInstance (di
stinguishedName (RelativeDistinguishedName (AttributeValueAssertion (a
ttributeType 1.3.18.0.2.4.6, attributeValue "NETA")), RelativeDistingu
ishedName (AttributeValueAssertion (attributeType 1.3.18.0.0.2032, att
ributeValue "SSCP1A")), RelativeDistinguishedName (AttributeValueAsser
tion (attributeType 1.3.18.0.0.2133, attributeValue "P3A3274A")), Rela
tiveDistinguishedName (AttributeValueAssertion (attributeType 1.3.18.0
.0.1815, attributeValue "luCollection")))), actionReply (actionType 1.
3.18.0.0.2222, actionReplyInfo ((vertex1 (object (distinguishedName (R
elativeDistinguishedName (AttributeValueAssertion (attributeType 1.3.1
8.0.2.4.6, attributeValue "NETA")), RelativeDistinguishedName (Attribu
teValueAssertion (attributeType 1.3.18.0.0.2032, attributeValue "SSCP1

luCollection

212 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

A")), RelativeDistinguishedName (AttributeValueAssertion (attributeTyp
e 1.3.18.0.0.1984, attributeValue "NETA.L3A3278A")))), class 1.3.18.0.
0.1829, states 01010100000001, info ())))))))

The following translated update data shows a session with LU L3A3278A was
started. No attributes are reported since this update represents a state change.

luCollection object name: NETA;SSCP1A;P3A3274A;luCollection

vertex 1: NETA;SSCP1A;NETA.L3A3278A

class : logicalUnit
states

Operational State : Enabled
Usage State : Active
Administrative State : Unlocked
Availability Status : No Status
Procedural Status : No Status
Unknown Status : False
Native Status : Active with session

Monitoring Resources through Event Reports
This section contains the following topics:
v “Overview”
v “Management of the Event Reporting Environment”
v “Creation of the Event Forwarding Discriminator”
v “Reporting Events to the Manager Application Program” on page 214
v “Event Report Data” on page 215
v “Event Report Example” on page 216

Overview
A manager application program can monitor certain resource objects maintained by
the VTAM topology agent for certain defined events. The VTAM topology agent
uses the event reporting in CMIP services to monitor resources.

The resource monitoring process consists of:

v Management of the event reporting environment

v Notification of events from the agent application program to the manager
application program.

Management of the Event Reporting Environment
The event reporting environment is mostly determined by the set of event
forwarding discriminator (EFD) objects that exist at any given time. The VTAM
topology agent does not become involved with the management of the event
reporting environment. CMIP services handles the creation and maintenance of the
event reporting environment.

The event reporting environment for the VTAM topology agent is determined partly
by the OSIEVENT start option. For a description of the factors that control the event
reporting environment, refer to “Special Considerations for Topology Manager
Application Programs” on page 14.

Creation of the Event Forwarding Discriminator
The manager application program can create an EFD object at CMIP services by
sending a CMIP create request specifying:

v A managed object class (EFD)

luCollection

Chapter 15. VTAM Topology Monitoring 213

v A managed object instance

v The discriminator construct that is used to filter notifications

v The destination that contains the name of the object (application program) that
should receive event reports.

The following example shows a CMIP create EFD request; the discriminator
construct passes only LU group change notifications.

The following special identifiers are used in the request:
2.9.3.2.3.4

eventForwardingDiscriminator
2.9.3.2.7.1

discriminatorId
2.9.3.2.7.56

discriminatorConstruct
2.9.3.2.7.14

eventType
1.3.18.0.0.1810

luGroupChangeNotif
2.9.3.2.7.55

destination
1.3.18.0.0.2175

managerApplicationName
msg CMIP-1.ROIVapdu (invokeID 196611, operation-value 8,

(managedObjectClass 2.9.3.2.3.4,(managedObjectInstance (distinguishedN
ame (RelativeDistinguishedName (AttributeValueAssertion (attributeType
1.3.18.0.2.4.6, attributeValue NETA)), RelativeDistinguishedName (Att
ributeValueAssertion (attributeType 2.9.3.2.7.4, attributeValue (name
SSCP1A))), RelativeDistinguishedName (AttributeValueAssertion (attribu
teType 2.9.3.2.7.1, attributeValue (string luGrCh)))))),attributeList(
(attributeId 2.9.3.2.7.31,attributeValue unlocked),(attributeId 2.9.3.
2.7.56,attributeValue (item (equality (attributeId 2.9.3.2.7.14,attrib
uteValue 1.3.18.0.0.1810)))),(attributeId 2.9.3.2.7.55,attributeValue
(single (name (RDNSequence (RelativeDistinguishedName (AttributeValueA
ssertion (attributeType 1.3.18.0.2.4.6, attributeValue NETA)), Relativ
eDistinguishedName (AttributeValueAssertion (attributeType 2.9.3.2.7.4
, attributeValue (name SSCP1A))), RelativeDistinguishedName (Attribute
ValueAssertion (attributeType 1.3.18.0.0.2175, attributeValue Manager)
)))))))))

Reporting Events to the Manager Application Program
Once the resource monitoring environment is created, unsolicited management
information can flow from the agent to the manager. When certain defined events
occur, a resource object sends a notification. The VTAM topology agent sends this
notification data to CMIP services. CMIP services applies the filtering constructs
based on active EFDs to the notification message. If it is determined that the event
matches a filter, CMIP services determines which manager application program
should receive the message in an event report. Note that multiple event reports
might be sent to multiple destinations based on a single notification event. This
situation might occur when multiple EFD filters are satisfied by a particular
notification event.

The event notification data is subject to the same merge process used for the
snapshot data. See “ACTION(snapshot) Update Merging” on page 170 for a
description of the merge process. The merging of event data is based on the state
of the resource being reported. If the state to be reported is a transient state
(non-resting state), the event data is held and merged with other event data until

Event Reports

214 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

the resource is reporting event data with a resting state. As with the snapshot
merge process, the event merging is timed such that resources that remain in
transient states too long are reported.

Merging event data has an additional consideration that does not apply to the
snapshot update data: the event data specifies the reason for the event. It is
possible for event data with different reasons to be merged. In that case, the
general rule used by the VTAM topology agent is that the reason for event data that
was merged last is used in the reported notification. For example, if an
object-creation event occurred but the state was a transient state, the event data is
held. Subsequent state-change event data might be merged with the object-creation
data. When the event notification is finally sent, the reason specifies state-change.
The manager application program can infer the creation of the object by having no
previous report of the object.

CMIP services sends the notification data to the manager in the form of a CMIP
event-report request. VTAM supports unconfirmed event-reports only
(m-EventReport).

Changes affecting network resources result in notifications that might flow to a
manager application program. The VTAM topology agent supports notifications for:
v State change
v Object creation
v Object deletion
v LU group change.

Event Report Data
Data in the m-EventReport request appear in the following structure:

managedObjectClass --object class
managedObjectInstance --object distinguished name
eventTime --time stamp
eventType --event type

--No further info for objectCreation and objectDeletion

--Added for stateChange eventType
eventInfo

attributeIdentifierList --new attribute identifiers
stateChangeDefinition

nativeStatus --object attribute
operationalState --object attribute
usageState --object attribute
availabilityStatus --object attribute
proceduralStatus --object attribute
unknownStatus --object attribute

--Added for luGroupChangeNotif eventType
eventInfo

notifReason --reason for LU group change
luName --group member name
luGroupSize --group size

managedObjectClass
Object classes for the reported resource.

managedObjectInstance
Distinguished name of the reported resource.

Event Reports

Chapter 15. VTAM Topology Monitoring 215

eventTime
Time stamp with the current system time when the event report is built from
the corresponding notification.

eventType
One of the following events:

v stateChange

v objectCreation

v objectDeletion

v luGroupChangeNotif (for USERVARs, Generic Resources, and IP info
attributes for TN3270 connection LUs.)

ObjectCreation of an luGroup object is considered an
luGroupChangeNotif event. The VTAM topology agent reports the
member that caused the object to be created. The manager application
program can infer the creation of the object by monitoring for this event
report.

attributeIdentifierList
List of attributes identifiers, also provided in the following
stateChangeDefinition field, for which new values are provided.

stateChangeDefinition
Contains six out of seven OSI states in the attribute form, rather than in the
OCTET string form. The VTAM topology agent returns all attributes with the
current values.

administrativeState is omitted because the value is always assumed to be
unlocked.

notifReason
One of the following reasons for LU group change.
v luAdded
v luDeleted

luName
Name of member in LU group that caused the event.

luGroupSize
Number of members in LU group.

Event Report Example
The following example shows an event report for an LU group change.

The following special identifiers are used in the event report:
1.3.18.0.0.1803

luGroup
1.3.18.0.0.1807

luGroupName
1.3.18.0.0.1810

luGroupChangeNotif
msg CMIP-1.ROIVapdu (invokeID 65541, operation-value 0,

argument (managedObjectClass 1.3.18.0.0.1803, managedObjectInstance (d
istinguishedName (RelativeDistinguishedName (AttributeValueAssertion (
attributeType 1.3.18.0.2.4.6, attributeValue "NETA")), RelativeDisting
uishedName (AttributeValueAssertion (attributeType 1.3.18.0.0.2032, at
tributeValue "SSCP1A")), RelativeDistinguishedName (AttributeValueAsse
rtion (attributeType 1.3.18.0.0.1807, attributeValue "GENERIC1")))), e
ventTime "1994/10/17-11:08:18.0", eventType 1.3.18.0.0.1810, eventInfo
(notifReason luAdded, luName "NETA.APPL2", luGroupSize 1)))

Event Reports

216 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

The following translated event data shows that LU NETA.APPL2 has been added to
the LU group GENERIC1 (a generic resource name).

Resource name : NETA;SSCP1A;GENERIC1
class : luGroup
eventTime : 1994/10/17-11:08:18.0
eventType : luGroupChangeNotif
eventInfo

notifReason : luAdded
luName : NETA.APPL2
luGroupSize : 1

The following example shows an event report for a state change.

The following special identifiers are used in the event report:
1.3.18.0.0.1829

logicalUnit
2.9.3.2.10.14

stateChange
msg CMIP-1.ROIVapdu (invokeID 65551, operation-value 0,

argument (managedObjectClass 1.3.18.0.0.1829, managedObjectInstance (d
istinguishedName (RelativeDistinguishedName (AttributeValueAssertion (
attributeType 1.3.18.0.2.4.6, attributeValue "NETA")), RelativeDisting
uishedName (AttributeValueAssertion (attributeType 1.3.18.0.0.2032, at
tributeValue "SSCP1A")), RelativeDistinguishedName (AttributeValueAsse
rtion (attributeType 1.3.18.0.0.1984, attributeValue "NETA.APPL2")))),
eventTime "1995/01/27-14:16:20.0", eventType 2.9.3.2.10.14, eventInfo
(attributeIdentifierList (AttributeId 1.3.18.0.0.2080, AttributeId 2.
9.3.2.7.35, AttributeId 2.9.3.2.7.39, AttributeId 2.9.3.2.7.33, Attrib
uteId 2.9.3.2.7.36, AttributeId 2.9.3.2.7.38), stateChangeDefinition (
(attributeID 1.3.18.0.0.2080, newAttributeValue 0), (attributeID 2.9.3
.2.7.35, newAttributeValue enabled), (attributeID 2.9.3.2.7.39, newAtt
ributeValue idle), (attributeID 2.9.3.2.7.33, newAttributeValue ()), (
attributeID 2.9.3.2.7.36, newAttributeValue ()), (attributeID 2.9.3.2.
7.38, newAttributeValue FALSE))))))

The following translated event data shows that LU NETA.APPL2 has changed state.
This event report example was reported because of an EFD set to monitor state
changes.

Resource name : NETA;SSCP1A;NETA.APPL2
Class : logicalUnit
eventTime : 1995/01/27-14:16:20.0
eventType : stateChange
AttributeIdentifierList

nativeStatus
operationalState
usageState
availabilityStatus
proceduralStatus
unknownStatus

StateChangeDefinition
nativeStatus : newAttributeValue ACTIVE
operationalState : newAttributeValue ENABLED
usageState : newAttributeValue IDLE
availabilityStatus : newAttributeValue ()
proceduralStatus : newAttributeValue ()
unknownStatus : newAttributeValue FALSE

Event Reports

Chapter 15. VTAM Topology Monitoring 217

Event Reports

218 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Chapter 16. Requesting Specific Resource Data

This chapter describes how the VTAM topology agent gathers information about
specific resources. The following topics are included:
v Requesting specific resource data (GET)
v Requesting specific resource data (logicalUnitIndex).

Requesting Specific Resource Data (GET)
This section contains the following topics:
v “Overview”
v “GET Request”
v “Network-Qualified Names and GET Requests” on page 221
v “GET Response” on page 222
v “GET Data” on page 223
v “GET Data Example” on page 223.

Overview
The CMIP GET operation can be used by a manager application program to obtain
resource information for a single named resource. The object class of the resource
might not be known, so it is not necessary that the manager application program
know the exact object class of a particular resource before using the GET operation
to obtain information about that resource. It is necessary, however, that the
manager application program know the name of the resource and that the name be
properly constructed for the object class containing the resource.

If the VTAM topology agent receives a GET request for a known resource, the
VTAM topology agent provides a single GET response containing the requested
resource information, as it exists when the GET request is processed.

GET Request
The GET request contains the following information:

object class
If the object class of the resource is known, it can be specified in the
request as the object identifier (OI) representing the appropriate class. If the
class is not known, the class can be specified as actualClass (2.9.3.4.3.42).
actualClass is a special class specification that tells the VTAM topology
agent that the class is unknown and that the VTAM topology agent should
return the real object class in the GET response.

The object class can be specified as a class higher in the inheritance tree
than the real class of the resource. An object in the lower (real) class can
validly respond to a request as if the object were in the higher (requested)
class. Another way to state this behavior is that the lower class can act
allomorphically to the higher class; it can emulate the higher class. For
example, if a VTAM node is an interchange node (combination type 5 node
and APPN network node) and the VTAM topology agent at that VTAM node
receives a GET request for the VTAM node that specifies the t5Node object
class, the VTAM topology agent at that node can respond to the request
since the interchangeNode class inherits from the t5Node class, allowing an
object in the interchangeNode class to act allomorphically to the t5Node
class. If the VTAM node is a t5Node and the VTAM topology agent received
a request specifying an interchangeNode, the request is rejected, since a
t5Node cannot act as an interchangeNode.

© Copyright IBM Corp. 1995, 2001 219

object instance
The distinguished name of the object must be provided in the GET request.
Although the object class might not be known, the naming attribute used in
the object instance name must be a valid naming attribute for the object
class in which the resource exists. No generic form exists for naming
attribute (similar to actualClass) that can apply to any class. Note that the
first two relative distinguished names (RDNs) in the distinguished name
must be the netID and node name of the VTAM topology agent host.

scope The VTAM topology agent does not support the scoping function; therefore,
the optional scope information can be omitted from the GET request. If
scope is specified in the request, the associated scope value must be
specified as '(basicScope 0)'.

filter The VTAM topology agent does not support the filtering function; therefore,
the optional filter information can be omitted from the GET request. If the
filter is specified in the request, the associated filter value must be specified
as either '(and ())' or '(or ())'.

attribute list
The attribute list contains a set of OIs representing the attributes of the
object for which the manager application program is requesting information.
The attributes must be defined in the requested object class, or the
discovered object class if actualClass is specified. They must also be
among the attributes supported by the VTAM topology agent. For the list of
supported attributes, refer to “Appendix E. VTAM Topology Agent Object
and Attribute Tables” on page 303. The attribute list can be omitted from the
GET request. Omitting it indicates to the VTAM topology agent that all
supported attributes for the object class (specified or discovered) must be
provided in the GET response.

The VTAM topology agent supports GET requests for resources in the following
object classes:
v appnEN
v appnNN
v appnRegisteredLu
v crossDomainResource
v definitionGroup
v interchangeNode
v lenNode
v logicalLink
v logicalUnit
v luGroup
v migrationDataHost
v port
v t2-1Node
v t4Node
v t5Node.

Certain object classes are named with netID and snaNodeName; the object
instance names for objects in these classes must be the VTAM topology agent host
name for GET requests for these objects to be routed to the VTAM topology agent.
For example, a VTAM topology agent at node NETA;SSCP1A might report node
NETA;SSCP2A as a type 5 node in a snaLocalTopo response. A subsequent GET
request sent to object NETA;SSCP2A will not be routed to the VTAM topology agent

GET

220 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

at node NETA;SSCP1A because the object instance name in the GET request is
not named under NETA;SSCP1A, the VTAM topology agent name. This situation
applies to the following object classes:
v appnEN
v appnNN
v interchangeNode
v migrationDataHost
v t5Node.

Network-Qualified Names and GET Requests
GET requests for logicalLink, logicalUnit, crossDomainResource, and
appnRegisteredLU can specify a network-qualified name as the third RDN in the
distinguished name. The name can also be specified without being network
qualified. The VTAM topology agent determines whether the name matches the
name of a resource at the VTAM topology agent host and verifies that the resource
found is the correct type for the naming attribute specified in the GET request.

Rules for matching names by object type are listed here:

logicalLink
If the linkName attribute is network qualified, the netID must be the same
as the netID of the VTAM topology agent host receiving the GET request.

logicalUnit
If the luName attribute is network qualified, the netID must be the same as
the netID that VTAM display commands require for displaying the resource.
The VTAM topology agent host netID will always work. For dependent LUs
that are attached to a non-native PU type 2.1 node (nonnative network
attachment), the netID of the physical unit will also be accepted. A
non-network qualified name always has a default netID that is the same as
the VTAM topology agent host netID.

For application logical units, the luName attribute can specify the name
coded on the ACBNAME operand of the APPL definition statement. For this
name to match, it must be either non-network-qualified or network qualified
with the netID of the VTAM topology agent host. When a match occurs, the
VTAM topology agent host returns data for the application program with the
specified ACBNAME.

crossDomainResource
If the nonLocalResourceName attribute is specified with a network-qualified
name, the name and netID must exactly equal the name and netID of the
CDRSC for a match to occur. If a non-network-qualified name is given, the
name will only match a CDRSC that has been added to the VTAM topology
agent host SRT directory.

The nonLocalResourceName attribute can also specify the name coded on
the LUALIAS operand of a CDRSC definition. For this name to match, the
name must be either non-network-qualified or qualified with the netID of the
VTAM topology agent host.

appnRegisteredLU
If the nonLocalResourceName attribute is specified with a network-qualified
name, the name and netID must exactly match the name and netID of the
registered LU. If a non-network-qualified name is given, the name will only
match a registered LU with the netID of the VTAM topology agent host.

The following example shows a GET request for resource data:

GET

Chapter 16. Requesting Specific Resource Data 221

msg CMIP-1.ROIVapdu (invokeI D 196610, operation-
value 3, argument (baseManagedObjectClass 1.3.18.
0.0.1844, baseManagedObjectInstance (distinguishe
dName (RelativeDistinguishedName (AttributeValueA
ssertion (attributeType 1.3.18.0.2.4.6, attribute
Value "NETA")), RelativeDistinguishedName (Attrib
uteValueAssertion (attributeType 1.3.18.0.0.2032,
attributeValue "SSCP1A")), RelativeDistinguished
Name (AttributeValueAssertion (attributeType 1.3.
18.0.0.2032, attributeValue "NCP3AB8")))), attrib
uteIdList (AttributeId 2.9.3.2.7.33, AttributeId
1.3.18.0.0.2035, AttributeId 1.3.18.0.0.2036, Att
ributeId 1.3.18.0.0.1971, AttributeId 1.3.18.0.0.
2080, AttributeId 2.9.3.2.7.35, AttributeId 2.9.3
.2.7.36, AttributeId 2.9.3.2.7.39)))

Note from the example that the class specified is t4Node and that the object
instance is NETA;SSCP1A;NCP3AB8. There is no scope or filter specified. The
attribute list is specified and contains the following attributes:
v availabilityStatus
v subareaAddress
v subareaLimit
v gatewayNode
v nativeStatus
v operationalState
v proceduralStatus
v usageState.

GET Response
When the VTAM topology agent successfully processes a GET request that
contains only valid data, the GET response is in the form of a single RORS
message. The RORS specifies the object class, object instance, and the list of
requested attributes and their values, as they exist when the GET request is
processed.

If the real object class is found to be a valid allomorph for the requested object
class, then the list of attributes reported in the response is limited to attributes
defined in the requested class. For example, if requested class is t5Node and an
attribute list is not specified in the request, and if the resource is discovered to be
an interchangeNode, the GET response includes an object class of
interchangeNode, the same object instance name as the request, and the list of
attributes defined in the t5Node object class. Attributes of the interchangeNode that
are not defined also in the t5Node class are not provided in the response.

If the requested resource is found to be in an object class other than the class
specified, and the discovered class is not a valid allomorph for the requested class,
then the GET response is an ROER error message, with error value of
noSuchObjectInstance.

If the naming attribute specified in the object instance name is not valid for the
object class specified, the GET response is an ROER, with error value of
noSuchObjectInstance. If actualClass is specified in the request, and the naming
attribute specified in the object instance is not valid for the discovered object class,
then the GET response is an ROER error message, with error value of
noSuchObjectInstance.

If an attribute list is specified in the GET request, and one of more of the specified
attributes are not defined in the requested or discovered class, then the GET

GET

222 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

response is an ROER, with error value indicating a getListError error. The
getListError syntax specifies that each requested attribute be listed in the
response, with an indication of whether the attribute is valid or not valid. The valid
atttributes are then accompanied by their requested values.

If the resource name specified in the object instance of a request is not known to
VTAM, the GET response is an ROER message, with error value indicating a
noSuchObjectInstance.

Note that it is possible to specify the same attribute multiple times in the attribute
list in the GET request. If valid attributes are specified multiple times, the VTAM
topology agent ignores the secondary specifications and returns each attribute
value only one time in the GET response. If, however, attributes that are not valid
are specified multiple times in the GET request, the VTAM topology agent indicates
an attribute error in the GET response for each attribute that is not valid.

GET Data
The following shows the major data fields that comprise the GET response:
v object class
v object instance
v attribute list:

– attribute ID
– attribute value

GET Data Example
The following is an example of the GET response that the VTAM topology agent
may return for the GET request example shown previously.

msg CMIP-1.RORSapdu (invokeID
196610, resultOption (operation-value 3, result
(managedObjectClass 1.3.18.0.0.1844, managedObjec
tInstance (distinguishedName (RelativeDistinguish
edName (AttributeValueAssertion (attributeType 1.
3.18.0.2.4.6, attributeValue "NETA")), RelativeDi
stinguishedName (AttributeValueAssertion (attribu
teType 1.3.18.0.0.2032, attributeValue "SSCP1A"))
, RelativeDistinguishedName (AttributeValueAssert
ion (attributeType 1.3.18.0.0.2032, attributeValu
e "NCP3AB8")))), currentTime "1995/04/24-10:03:50
.0", attributeList (Attribute (attributeId 2.9.3.
2.7.33, attributeValue ()), Attribute (attributeI
d 1.3.18.0.0.1971, attributeValue FALSE), Attribu
te (attributeId 1.3.18.0.0.2080, attributeValue 0
), Attribute (attributeId 2.9.3.2.7.35, attribute
Value enabled), Attribute (attributeId 2.9.3.2.7.
36, attributeValue ()), Attribute (attributeId 1.
3.18.0.0.2035, attributeValue 3), Attribute (attr
ibuteId 1.3.18.0.0.2036, attributeValue 255), Att
ribute (attributeId 2.9.3.2.7.39, attributeValue
active)))))

Note that the requested attributes were all returned with the following values:
availabilityStatus : ()
gatewayNode : FALSE
nativeStatus : 0 (means active)
operationalState : enabled
proceduralStatus : ()
subareaAddress : 3
subareaLimit : 255
usageState : active

GET

Chapter 16. Requesting Specific Resource Data 223

Requesting Specific Resource Data (logicalUnitIndex)
This section contains the following topics:
v “Overview”
v “Action Request”
v “Initial Data Response” on page 225
v “Action Termination” on page 226
v “logicalUnitIndex Snapshot Data” on page 226
v “logicalUnitIndex Snapshot Example” on page 227.

Overview
The logicalUnitIndex collection object allows a user to request a snapshot for all
LU-related resources that match a given name.

logicalUnitIndex is used to report on LUs, CDRSCs, USERVARs and generic
resources, without forcing a manager application program to understand the actual
resource class in advance. When a snapshot is issued against the logicalUnitIndex
object, certain information on all resources that match the name supplied by the
snapshot and that are LUs, CDRSCs, USERVARs or generic resources is returned.

For logicalUnitIndex, only the oneTimeOnly snapshot action is supported. No update
data can be requested or is ever returned for this snapshot.

Action Request
A snapshot action request is used to request LU-related resource data. The action
is sent as an m-Action-Confirmed operation.

The snapshot request for logicalUnitIndex object can specify whether or not a
network search is requested for the target name, in addition to looking for matching
resources in the VTAM topology agent host node. The search information is
specified in the snapshot request through values of a managementExtension with
the luSearchParm parameter where information is set to 0 for no-search or 1 for
search. Without the managementExtension search parameter, the default is not to
perform a network search.

The target resource logicalUnitIndexName can be network qualified, such as
NETA.APPL1.

The following example shows a request with the target name NETA.APPL1, with
“no-search” explicitly specified by the 0 value for information in the luSearchParm
managementExtension.

The following special identifiers are used in the request:
1.3.18.0.0.2291

logicalUnitIndex
1.3.18.0.0.2294

logicalUnitIndexName
1.3.18.0.0.2222

snapshot
1.3.18.0.0.5946

luSearchParm
msg CMIP-1.ROIVapdu (invokeID 196612, operation-value 7,

argument (baseManagedObjectClass 1.3.18.0.0.2291, baseManagedObjectIns
tance (distinguishedName (RelativeDistinguishedName (AttributeValueAss
ertion (attributeType 1.3.18.0.2.4.6, attributeValue "NETA")), Relativ

logicalUnitIndex

224 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

eDistinguishedName (AttributeValueAssertion (attributeType 1.3.18.0.0.
2032, attributeValue "SSCP1A")), RelativeDistinguishedName (AttributeV
alueAssertion (attributeType 1.3.18.0.0.2294, attributeValue"NETA.APPL
1")))), actionInfo (actionType 1.3.18.0.0.2222, actionInfoArg (start o
neTimeOnly, addlInfo (ManagementExtension (identifier 1.3.18.0.0.5946,
significance TRUE, information 0))))))

Initial Data Response
Several objects can be reported for the target name. For example, any of the
following combinations are possible:

v A CDRSC might be found on the local VTAM and the corresponding LU might be
found on a remote VTAM

v Both an LU and a USERVAR of the same name might be found on the local
VTAM

v Different LUs with the same name might be found in different networks.

With the oneTimeOnly action requested, all the data is returned in linked-replies.
Then, to indicate that the data for the entire set of LUs has been returned, the
VTAM topology agent sends an additional ROIV linked-reply that is an empty set
ROIV followed by an RORS response with only the invoke identifier of the original
action request.

Table 20. Reported Resources for logicalUnitIndex Data

Resource Object Class Notes

Non-SNA terminal LU Local terminal

Application LU

Dependent LU LU

CDRSC CDRSC Dynamic alias is ignored

USERVAR LUgroup Report USERVAR name and value

Generic resource LUgroup Report generic and real members

If no resource is found for the target name in either the VTAM topology agent host
or any remote host being searched, the response is an ROER with error value 1
(noSuchObjectInstance).

If a search fails because of a normal VTAM failure to have sessions with a remote
host, a processingFailure ROER or a linked-reply ROIV with specificErrorInfo of
snaDefinedError with SNA sense information is sent, possibly after some valid ROIV
linked-replies have already been sent for resources found for the target name.

In the following example, an ROER returns SNA sense information because there is
no link to the host where the resource was known to be present. (NETAPPL1 has
already been reported as a CDRSC owned by SSCP2A).

msg CMIP-1.ROERapdu (invokeID 196610, error-value 10
, parameter (managedObjectClass 1.3.18.0.0.2291, managedObjectInstanc
e (distinguishedName (RelativeDistinguishedName (AttributeValueAssert
ion (attributeType 1.3.18.0.2.4.6, attributeValue "NETA")), RelativeD
istinguishedName (AttributeValueAssertion (attributeType 1.3.18.0.0.2
032, attributeValue "SSCP1A")), RelativeDistinguishedName (AttributeV
alueAssertion (attributeType 1.3.18.0.0.2294, attributeValue "NETAPPL
1")))), specificErrorInfo (errorId 1.3.18.0.0.2266, errorInfo (senseD
ata 087D0001, productIdentification "ACF/VTAM.4.3.0"))))

The translated ROER data follows:

logicalUnitIndex

Chapter 16. Requesting Specific Resource Data 225

error-value : processingFailure
logicalUnitIndexName : NETA;SSCP1A;NETAPPL1
SpecificErrorInfo

ErrorID : snaDefinedError
ErrorInfo : senseData 087D0001

productIdentification "ACF/VTAM.4.3.0"

Action Termination
The VTAM topology agent terminates a snapshot action for the logicalUnitIndex
object under the following conditions:
v The requested data has been sent.
v An error occurs during snapshot processing in VTAM.
v The association that the snapshot is using terminates.

logicalUnitIndex Snapshot Data
The linked-replies for logicalUnitIndex contain data made up of one instance or
multiple instances of the following structure:

vertex1
object LU-related object distinguished name
class object class
states OSI states for this object
info

dependencies object attribute
nlrResidentNodePointer object attribute
luGroupMembers object attribute
cdrscRealLuName object attribute
userLabel object attribute

The following list describes what each field contains.

vertex1
Contains all data reported for a single LU-related object.

class Monitored LU-related objects are reported under the following object
classes:
v logicalUnit
v crossDomainResource
v luGroup (for USERVAR or generic resource)

A remote LU that appears to the VTAM topology agent as a CDRSC is
reported as an LU under its owning node if the remote LU is found under
that node as a result of a network search.

states 14-character string for the following OSI states:
v operationalState
v usageState
v administrativeState
v availabilityStatus
v proceduralStatus
v unknownStatus
v nativeStatus

No states information is returned for luGroup. No states information is
returned if the object was found as the result of a network search.

info Set of attributes for the LU-related object. The info field and the attributes
that follow are not included if the object was found as the result of a
network search.

logicalUnitIndex

226 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Not all attributes are reported for all object classes or are necessarily
reported in the order shown in the above structure. The following chart
shows which attributes are possibly reported for an object class.

Table 21. Attributes for logicalUnitIndex Reported Objects

Attribute LU CDRSC luGroup

dependencies X X

nlrResidentNodePointer X

luGroupMembers X

cdrscRealLuName X

userLabel X X

logicalUnitIndex Snapshot Example
The following example shows the data response for the target name NETA.APPL1.
The example includes vertex1 data for one resource found in SSCP1A.

The following special identifiers are used in the response:
1.3.18.0.0.2291

logicalUnitIndex
1.3.18.0.0.2294

logicalUnitIndexName
1.3.18.0.0.2222

snapshot
1.3.18.0.0.2194

dependencies
0.0.13.3100.0.7.50

userLabel
msg CMIP-1.ROIVapdu

(invokeID 131077, linked-ID 196612, operation-value 2, argument (actio
nResult (managedObjectClass 1.3.18.0.0.2291, managedObjectInstance (di
stinguishedName(RelativeDistinguishedName (AttributeValueAssertion (at
tributeType 1.3.18.0.2.4.6, attributeValue"NETA")), RelativeDistinguis
hedName (AttributeValueAssertion (attributeType 1.3.18.0.0.2032, attri
buteValue "SSCP1A")), RelativeDistinguishedName (AttributeValueAsserti
on (attributeType 1.3.18.0.0.2294, attributeValue "NETA.APPL1")))), ac
tionReply (actionType 1.3.18.0.0.2222, actionReplyInfo ((vertex1 (obje
ct (distinguishedName (RelativeDistinguishedName (AttributeValueAssert
ion (attributeType 1.3.18.0.2.4.6, attributeValue "NETA")), RelativeDi
stinguishedName (AttributeValueAssertion (attributeType 1.3.18.0.0.203
2, attributeValue "SSCP1A")), RelativeDistinguishedName (AttributeValu
eAssertion (attributeType 1.3.18.0.0.1984, attributeValue "NETA.APPL1"
)))), class 1.3.18.0.0.1829, states 01000100000000, info (Attribute (a
ttributeId 1.3.18.0.0.2194, attributeValue (dependents (and (Dependent
s (item (distinguishedName (RelativeDistinguishedName (AttributeValueA
ssertion (attributeType 1.3.18.0.2.4.6, attributeValue "NETA")), Relat
iveDistinguishedName (AttributeValueAssertion (attributeType 1.3.18.0.
0.2032, attributeValue "SSCP1A")), RelativeDistinguishedName (Attribut
eValueAssertion (attributeType 1.3.18.0.0.2272, attributeValue "APPL.A
PPL1A"))))), Dependents (item (distinguishedName (RelativeDistinguishe
dName (AttributeValueAssertion (attributeType 1.3.18.0.2.4.6, attribut
eValue "NETA")), RelativeDistinguishedName (AttributeValueAssertion (a
ttributeType 1.3.18.0.0.2032, attributeValue "SSCP1A"))))))))), Attrib
ute (attributeId 0.0.13.3100.0.7.50, attributeValue "APPL1")))))))))

The following translated initial data shows LU NETA.APPL1 was found in SSCP1A
(agent host), under application program major node APPL1A:

logicalUnitIndex

Chapter 16. Requesting Specific Resource Data 227

V1: NETA.SSCP1A.NETA.APPL1(LU)
V1: LU expansion

vertex 1 : NETA;SSCP1A;NETA.APPL1
class : logicalUnit
states

Operational State : Enabled
Usage State : Idle
Administrative State: Unlocked
Availability Status : No Status
Procedural Status : No Status
Unknown Status : False
Native Status : Active

info
userLabel : APPL1
dependencies : NETA;SSCP1A;APPL.APPL1A

NETA.SSCP1A

logicalUnitIndex

228 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Part 3. Appendixes

© Copyright IBM Corp. 1995, 2001 229

230 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Appendix A. C Language Header File (ACYAPHDH)

The following C language header file, ACYAPHDH, contains many declarations that
are needed for compiling a C program that uses the CMIP services API. This
header file is shipped in the AMACLIB data set of the SYS1.MACLIB data set.

/* */ 00050000
/* COPYRIGHT = LICENSED MATERIALS - PROPERTY OF IBM */ 00100000
/* */ 00150000
/* THIS PRODUCT CONTAINS */ 00200000
/* "RESTRICTED MATERIALS OF IBM" */ 00250000
/* */ 00300000
/* 5695-117 (C) COPYRIGHT IBM CORP. 1994 */ 00350000
/* ALL RIGHTS RESERVED. */ 00400000
/* */ 00450000
/* U.S. GOVERNMENT USERS RESTRICTED RIGHTS - */ 00500000
/* USE, DUPLICATION OR DISCLOSURE RESTRICTED */ 00550000
/* BY GSA ADP SCHEDULE CONTRACT WITH IBM CORP. */ 00600000
/* */ 00650000
/* SEE COPYRIGHT INSTRUCTIONS. */ 00700000
/* */ 00750000
/* $MAC(ACYAPHDH),COMP(CMIP),PROD(VTAM): CMIP MIB API declarations */ 00800000
/* */ 00850000
/* FLAG REASON RELEASE DATE ORIGIN FLAG DESCRIPTORS */ 00900000
/* ---- -------- ------- ------ ------ ---------------------------- */ 00950000
/* $L0= FYJDR002 VTAGENT 940523 647877: VTAM Agent */ 01000000
/* $Y1= P115000 VTAGENT 940801 792173: Add Address Fields to end */ 01050000
/* of Vector */ 01100000
/* $Y2= P115922 VTAGENT 940810 647877: Fix declaration of */ 01150000
/* MIBSendDeleteRegistration */ 01200000
/* */ 01250000

01300000
#ifndef ACYAPHDH_INCLUDED /* Only process these once. */ 01350000

01400000
#define ACYAPHDH_INCLUDED /* Signify that these have been 01450000

processed. */ 01500000
01550000

#include /* Obtain definition of time_t for 01600000
APIhdr. */ 01650000

01700000
/***/ 01750000
/* The following constant is the maximum number of invoke ids which */ 01800000
/* may concurrently active on the same connection. It is the */ 01850000
/* maximum allowed value for the max outstanding invoke ids */ 01900000
/* parameter on MIBConnect. */ 01950000
/***/ 02000000

02050000
#define INVOKE_ID_MAX 0x00010000 02100000

02150000
/***/ 02200000
/* The following constant is the length in bytes of the longest */ 02250000
/* possible local identifier. */ 02300000
/***/ 02350000

02400000
#define LOCAL_ID_MAX 8 02450000

02500000
/***/ 02550000
/* The following constants represent the settings of the msg_type */ 02600000
/* field in the APIhdr structure. */ 02650000
/***/ 02700000

02750000
#define API_MSG 0 02800000
#define API_REG_ACCEPT 1 02850000

© Copyright IBM Corp. 1995, 2001 231

#define API_SVC_COMPLETE 2 02900000
#define API_SVC_ERROR 3 02950000
#define API_TERMINATE_INSTANCE 4 03000000

03050000
/***/ 03100000
/* The following constants represent the settings of the origin */ 03150000
/* field in the APIhdr structure. */ 03200000
/***/ 03250000

03300000
#define ORIGIN_OBJ 0 /* The request which initiated 03350000

this message was generated by 03400000
the object which received this 03450000
message. */ 03500000

03550000
#define ORIGIN_REMOTE 1 /* The request which initiated 03600000

this message was generated by 03650000
an object other than the one 03700000
which received this message 03750000
(unless the object generated a 03800000
request to itself). */ 03850000

03900000
/***/ 03950000
/* The following constants are used for the connection options */ 04000000
/* parameter of MIBConnect. */ 04050000
/***/ 04100000

04150000
#define NO_CONNECT_OPTIONS 0 04200000
#define SHORT_NAMES 2 04250000

04300000
/***/ 04350000
/* The following constants represent valid capabilities bits which */ 04400000
/* can be specified in the capabilities parameter of MBReg(). */ 04450000
/***/ 04500000

04550000
#define NO_CAPABILITIES 0 /* no special capabilities */ 04600000

04650000
#define SUBTREE_MANAGER 1 /* The object being registered is 04700000

a subtree manager. */ 04750000
04800000

/***/ 04850000
/* The following constant is used as the value of the name type */ 04900000
/* parameter of MIBSendRegister. */ 04950000
/***/ 05000000

05050000
#define DN_OF_INSTANCE 0 05100000

05150000
/***/ 05200000
/* The following constants represent values for the dest type */ 05250000
/* parameter of MIBSendCmipRequest. */ 05300000
/***/ 05350000

05400000
#define DS_NOT_PROVIDED 0 05450000
#define DS_FULL_DN 1 05500000
#define DS_ASSOC_HANDLE 2 05550000
#define DS_AE_TITLE 3 05600000

05650000
/***/ 05700000
/* Structures */ 05750000
/***/ 05800000

05850000
typedef struct APIhdr_tag 05900000
{ 05950000

unsigned char msg_type; 06000000
unsigned char api_version; 06050000
unsigned char origin; 06100000
unsigned char RESERVED1; /* Applications must not use or 06150000

depend on the value of this 06200000

C Language Header File

232 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

field in any way. */ 06250000
unsigned int invokeId; 06300000
unsigned int connectId; 06350000
unsigned int numLocalIds; 06400000
time_t timestamp; 06450000
unsigned short resultCode; 06500000
unsigned char RESERVED2??(2??); /* Applications must not use or 06550000

depend on the value of this 06600000
field in any way. */ 06650000

unsigned int RESERVED3; /* Applications must not use or 06700000
depend on the value of this 06750000
field in any way. */ 06800000

unsigned char localIds??(8??); 06850000
} APIhdr; 06900000

06950000
/***/ 07000000
/* The following structures are used by CMIP applications using */ 07050000
/* Data Spaces: */ 07100000
/* (1) DataSpaceVector Format (ISTRIV10_t) */ 07150000
/* (2) Interface Control Block (ISTNMICB_t) */ 07200000
/***/ 07250000

07300000
typedef struct ISTRIV10_tag 07350000
{ 07400000

char RIV10LEN; /* VECTOR LENGTH */ 07450000
char RIV10KEY; /* VECTOR KEY */ 07500000
char RIV10DSN??(8??); /* DATA SPACE NAME */ 07550000
char RIV10NMI??(4??); /* ADDRESS OF ISTNMICB IN DATA 07600000

SPACE STORAGE */ 07650000
char RIV10STK??(8??); /* STOKEN OF DATA SPACE */ 07700000
char reserved1??(4??); /* reserved - not available */ 07750000
char RIV10CDQ??(4??); /* Address of Dequeue Routine */ 07800000
char RIV10CRL??(4??); /* Address of Release Routine */ 07850000
char reserved2??(8??); /* reserved */ 07900000

} ISTRIV10_t; 07950000
08000000

typedef struct ISTNMICB_tag 08050000
{ 08100000

char reserved1??(4??); /* reserved - not available */ 08150000
void *NMIPDCDQ; /* Address of Dequeue Routine */ 08200000
void *NMIPDCRL; /* Address of Release Routine */ 08250000

} ISTNMICB_t; 08300000
08350000

/***/ 08400000
/* The following macro can be used to calculate the size of a given */ 08450000
/* APIhdr (including any local identifiers present). */ 08500000
/***/ 08550000

08600000
#define APIhdrSize(x,size) \ 08650000

((char *)&((x).localIds) - (char *)&(x) + \ 08700000
(size) * (x).numLocalIds) 08750000

08800000
/***/ 08850000
/* The following type definitions are provided so that the C */ 08900000
/* compiler can perform type checking on the MIB API calls. The */ 08950000
/* address of each MIB API routine should be given one of the */ 09000000
/* following types. */ 09050000
/***/ 09100000

09150000
typedef int MIBConnect_t(09200000

unsigned int, /* API level */ 09250000
int *, /* link id */ 09300000
unsigned int, /* max outstanding invoke 09350000

ids */ 09400000
const char *, /* application name */ 09450000
void *, /* TPEND exit */ 09500000
void *, /* read queue exit */ 09550000

C Language Header File

Appendix A. C Language Header File (ACYAPHDH) 233

unsigned int *, /* SMAE name buffer size */ 09600000
char *, /* SMAE name buffer */ 09650000
unsigned int *, /* System Object name buffer 09700000

size */ 09750000
char *, /* System Object name */ 09800000
int, /* user data field */ 09850000
unsigned int *, /* error flag */ 09900000
char **, /* VTAM release level */ 09950000
const char *, /* password */ 10000000
unsigned int, /* length of DS vector */ 10050000
ISTRIV10_t *, /* DS vector */ 10100000
unsigned int, /* local identifier length */ 10150000
unsigned int); /* connection options */ 10200000

10250000
#pragma linkage(MIBConnect_t,OS) 10300000

10350000
typedef int MIBDisconnect_t(10400000

int, /* link id */ 10450000
unsigned int *); /* return error flag */ 10500000

10550000
#pragma linkage(MIBDisconnect_t,OS) 10600000

10650000
typedef int MIBSendRegister_t(10700000

int, /* link id */ 10750000
unsigned int *, /* returned invoke id */ 10800000
const void *, /* local id */ 10850000
const char *, /* object class */ 10900000
int, /* name type */ 10950000
const char *, /* distinguished name */ 11000000
const char *, /* name binding oid */ 11050000
unsigned int, /* capability flags */ 11100000
unsigned int, /* allomorphs count */ 11150000
char **, /* allomorphs array */ 11200000
unsigned int, /* create handlers count */ 11250000
char **); /* create handlers array */ 11300000

11350000
#pragma linkage(MIBSendRegister_t,OS) 11400000

11450000
typedef int MIBSendDeleteRegistration_t(11500000

int, /* link id */ 11550000
unsigned int *, /* returned invoke id */ 11600000
const void *, /* local identifier */ 11650000
const char *); /* DN @Y2C*/ 11700000

11750000
#pragma linkage(MIBSendDeleteRegistration_t,OS) 11800000

11850000
typedef int MIBSendRequest_t(11900000

int, /* link id */ 11950000
unsigned int *, /* returned invoke id */ 12000000
const void *, /* local identifier */ 12050000
const char *); /* message */ 12100000

12150000
#pragma linkage(MIBSendRequest_t,OS) 12200000

12250000
typedef int MIBSendResponse_t(12300000

int, /* link id */ 12350000
unsigned int, /* invoke id */ 12400000
const void *, /* local identifier */ 12450000
const char *, /* source */ 12500000
const char *, /* dest association handle */ 12550000
const char *); /* message */ 12600000

12650000
#pragma linkage(MIBSendResponse_t,OS) 12700000

12750000
typedef int MIBSendCmipRequest_t(12800000

int, /* link id */ 12850000
unsigned int, /* argument type */ 12900000

C Language Header File

234 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

const char *, /* argument */ 12950000
const void *, /* local identifier */ 13000000
const char *, /* source */ 13050000
unsigned int, /* type of destination */ 13100000
const char *, /* destination */ 13150000
unsigned int *); /* returned invoke id */ 13200000

13250000
#pragma linkage(MIBSendCmipRequest_t,OS) 13300000

13350000
typedef int MIBSendCmipResponse_t(13400000

int, /* link id */ 13450000
unsigned int, /* invoke id */ 13500000
unsigned int, /* last in chain? */ 13550000
unsigned int, /* success? */ 13600000
unsigned int, /* argument type */ 13650000
const char *, /* argument */ 13700000
const void *, /* local identifier */ 13750000
const char *, /* source */ 13800000
const char *, /* dest association handle */ 13850000
unsigned int *); /* returned invoke id */ 13900000

13950000
#pragma linkage(MIBSendCmipResponse_t,OS) 14000000

14050000
/***/ 14100000
/* The following constants are for the synchronous return codes */ 14150000
/* which may be received from one of the MIB API routines or via */ 14200000
/* an API_SVC_ERROR message from CMIP Services. */ 14250000
/***/ 14300000

14350000
#define MB_ERR_ALLOC 7 14400000
#define MB_ERR_MAX_OUTSTANDING 932 14450000

14650000
/***/ 14700000
/* The following constants are for the synchronous return codes */ 14750000
/* which may be received only from one of the MIB API routines. */ 14800000
/***/ 14850000

14900000
#define MB_ERR_INVALID_LINK_ID 918 14946800
#define MB_ERR_NOT_REGISTERED 920 14993600
#define MB_ERR_CONNECT 945 15040400
#define MB_WARN_DATA_SPACE_FULL 1000 15087200
#define MB_WARN_EXIT_FAILURE 1001 15134000
#define MB_DATA_ON_DATA_SPACE 1002 15180800
#define MB_ERR_INVALID_ENVIRONMENT 1003 15227600
#define MB_ERR_INVALID_ARGUMENT 1004 15274400
#define MB_ERR_INVALID_ARGUMENT_TYPE 1005 15321200
#define MB_ERR_INVALID_ASSOC_HANDLE 1006 15368000
#define MB_ERR_INVALID_SMAE_NAME 1007 15414800
#define MB_ERR_CMIP_SERVICES_INACTIVE 1008 15461600
#define MB_ERR_INVALID_DS_VECTOR 1009 15508400
#define MB_ERR_INVALID_DEST_TYPE 1010 15555200
#define MB_ERR_INVALID_DIST_NAME 1011 15602000
#define MB_ERR_INVALID_MAX_INVOKE_IDS 1012 15648800
#define MB_ERR_INVALID_API_LEVEL 1013 15695600
#define MB_ERR_INVALID_APPL_NAME 1014 15742400
#define MB_ERR_INVALID_DS_VECTOR_SIZE 1015 15789200
#define MB_ERR_INVALID_SMAE_NAME_SIZE 1016 15836000
#define MB_ERR_INVALID_INVOKE_ID 1017 15882800
#define MB_ERR_MIBDISCONNECT 1018 15929600
#define MB_ERR_INVALID_MSG 1019 15976400
#define MB_ERR_INVALID_OBJECT_CLASS 1020 16023200
#define MB_ERR_INVALID_READ_QUEUE_EXIT 1021 16070000
#define MB_ERR_INVALID_SYSTEM_NAME_SIZE 1022 16116800
#define MB_ERR_INVALID_LOCAL_ID_SIZE 1023 16163600
#define MB_ERR_TRANSMIT 1024 16210400
#define MB_ERR_VTAM_INACTIVE 1025 16257200
#define MB_ERR_INVALID_USER_DATA 1026 16304000

C Language Header File

Appendix A. C Language Header File (ACYAPHDH) 235

#define MB_ERR_INVALID_ERROR_FLAG 1027 16350800
#define MB_ERR_INVALID_RELEASE_LEVEL 1028 16397600
#define MB_ERR_INVALID_PASSWORD 1029 16444400
#define MB_ERR_INVALID_CAPABILITY_FLAGS 1030 16491200
#define MB_ERR_INVALID_TPEND_EXIT 1031 16538000
#define MB_ERR_INVALID_LAST_IN_CHAIN_FLAG 1032 16584800
#define MB_ERR_INVALID_SUCCESS_FLAG 1033 16631600
#define MB_ERR_INVALID_SYSTEM_NAME 1034 16678400
#define MB_ERR_INVALID_CONNECT_OPTIONS 1035 16725200
#define MB_ERR_INVALID_NAME_TYPE 1036 16772000
#define MB_ERR_INVALID_NAME_BINDING 1037 16818800
#define MB_ERR_INVALID_ALLOMORPHS_COUNT 1038 16865600
#define MB_ERR_INVALID_ALLOMORPHS_ARRAY 1039 16912400
#define MB_ERR_INVALID_CREATE_HANDLERS_COUNT 1040 16959200
#define MB_ERR_INVALID_CREATE_HANDLERS_ARRAY 1041 17006000
#define MB_ERR_INVALID_LOCAL_ID 1042 17052800
#define MB_ERR_INVALID_DEST 1043 17099600

17150000
/***/ 17200000
/* The following return codes are returned from CMIP Services only */ 17250000
/* via API_SVC_ERROR messages. */ 17300000
/***/ 17350000

17400000
#define PROGRAM_CHECK 8 17433300

17466600
#define AUTHENTICATION_FAILED 250 17499900
#define AUTHENTICATION_INFO_MISSING 251 17533200
#define AUTHENTICATION_MECH_UNKNOWN 252 17566500

17600000
#define BER_BAD_TYPE 300 17650000
#define BER_BAD_MODULE 301 17700000
#define BER_NULL_TYPE 302 17750000
#define BER_NULL_MODULE 303 17800000
#define BER_NULL_STRING 304 17850000
#define BER_NULL_STRUCT 305 17900000
#define BER_BAD_METATABLE 306 17950000
#define BER_UNKNOWN_TYPE 307 18000000
#define BER_UNKNOWN_MEMBER 308 18050000
#define BER_UNKNOWN_ALTERNATIVE 309 18100000
#define BER_NO_END_PARENTHESIS 310 18150000
#define BER_NO_START_PARENTHESIS 311 18200000
#define BER_NO_MORE_STRING 312 18250000
#define BER_PARSE_ERROR 313 18300000
#define BER_IMPLICIT_CHOICE 314 18350000
#define BER_CANNOT_RESOLVE 315 18400000
#define BER_NEED_LABEL 316 18450000
#define BER_MISSING_MEMBER 317 18500000
#define BER_NO_PARENT 319 18550000
#define BER_BAD_DN_PARSE 320 18600000
#define BER_BAD_RESOLUTION_NODE 321 18650000
#define BER_MISSING_RESOLUTION_NODE 322 18700000
#define BER_LABEL_MISMATCH 323 18750000
#define BER_NOT_BOOLEAN 325 18800000
#define BER_NOT_INTEGER 326 18850000
#define BER_NOT_REAL 327 18900000
#define BER_NOT_NULL 328 18950000
#define BER_NOT_BIT_STRING 329 19000000
#define BER_NOT_HEX_STRING 330 19050000
#define BER_BAD_HEX_STRING 331 19100000
#define BER_NOT_OI 332 19150000
#define BER_BAD_TIME 333 19200000
#define BER_BAD_ENUMERATED 334 19250000
#define BER_BAD_PRINTABLE_STRING 335 19300000
#define BER_BAD_NUMERIC_STRING 336 19350000
#define BER_BAD_VISIBLE_STRING 337 19400000
#define BER_BAD_GRAPHIC_STRING 338 19450000
#define BER_BAD_GENERAL_STRING 339 19500000

C Language Header File

236 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

#define BER_BAD_IA5_STRING 340 19550000
#define BER_DUPLICATE_MEMBER 341 19600000
#define BER_CANT_DO_REAL 342 19650000
#define BER_NOT_STRAIGHT_BER 343 19700000
#define BER_UNRESOLVED_EXTERNAL 344 19750000
#define BER_STILL_MORE_STRING 345 19800000
#define BER_DUP_MODULE 347 19850000
#define BER_UNRESOLVED_MODULE_REF 348 19900000
#define BER_UNRESOLVED_REF 349 19950000
#define BER_FAILED_SUBTYPE 354 20000000
#define BER_BAD_CONSTRUCTED 356 20050000
#define BER_BAD_PRIMITIVE 357 20100000
#define BER_BAD_INITIAL_OCTET 358 20150000
#define BER_BAD_BOOLEAN 359 20200000
#define BER_BAD_OI 360 20250000
#define BER_BAD_NULL 361 20300000
#define BER_BAD_PARAMETERS 363 20400000
#define BER_EMPTY_BIT_STRING 364 20450000

20800000
#define RDN_SEP_AT_BEGIN_OF_DN 375 20847600
#define AVA_SEP_AT_BEGIN_OF_DN 376 20895200
#define SPACE_AT_BEGIN_OF_DN 377 20942800
#define INVALID_CHAR_AT_BEGIN_OF_DN 378 20990400
#define RDN_SEP_AT_BEGIN_OF_RDN 379 21038000
#define AVA_SEP_AT_BEGIN_OF_RDN 380 21085600
#define SPACE_AT_BEGIN_OF_RDN 381 21133200
#define INVALID_CHAR_AT_BEGIN_OF_RDN 382 21180800
#define INVALID_ALPHA_IN_INTEGER_VALUE 383 21228400
#define INVALID_SPACE_IN_INTEGER_VALUE 384 21276000
#define INVALID_CHAR_IN_INTEGER_VALUE 385 21323600
#define INVALID_SPACE_IN_OI_VALUE 386 21371200
#define INVALID_CHAR_IN_OI_VALUE 387 21418800
#define INVALID_SPACE_IN_SYMBOLIC_VALUE 388 21466400
#define INVALID_CHAR_IN_SYMBOLIC_VALUE 389 21514000
#define INVALID_CHAR_IN_ATTR_VALUE 390 21561600
#define INVALID_SPACE_IN_ATTR_VALUE 391 21609200
#define PREMATURE_END_OF_DN 392 21656800
#define INVALID_SPACE_AT_END_OF_RDN 393 21704400
#define BOTH_QUOTE_TYPES_USED 394 21752000

21800000
#define REPL_ERR_INVLD_VERBCODE 400 21850000
#define REPL_ERR_MISSING_ASN1_TREE 401 21900000
#define REPL_ERR_OBJCLASS_MISSING 402 21950000
#define REPL_ERR_OBJCLASS_INVALID 403 22000000
#define REPL_ERR_OBJINST_MISSING 404 22050000
#define REPL_ERR_OBJINST_INVALID 405 22100000
#define REPL_ERR_DUPLICATE_OBJINST 406 22150000
#define REPL_ERR_NO_SUCH_OBJINST 407 22200000
#define REPL_ERR_MOI_OC_MISMATCH 408 22250000
#define REPL_ERR_NAME_CREATE_FAILED 409 22300000
#define REPL_ERR_GDMO_FILE_BAD_VERS 410 22350000
#define REPL_ERR_NOTHING_TO_DELETE 411 22400000
#define REPL_WRN_OBJCLASS 412 22450000
#define REPL_ERR_ALREADY_AN_STM 413 22500000
#define REPL_ERR_INVLD_STM_CHILD 414 22550000
#define REPL_ERR_SCOPES_TO_NOTHING 415 22600000
#define REPL_ERR_INVALID_SCOPE 416 22650000
#define REPL_ERR_COMMITDN_NOTIN_LIST 417 22700000
#define REPL_ERR_NO_ONE_2_SEND_CRT_2 419 22750000
#define REPL_ERR_NOONE_2_SEND_EVNT_2 420 22800000
#define REPL_ERR_ALREADY_EVNT_HNDLR 421 22850000
#define REPL_ERR_NAMEBIND_INVALID 422 22900000
#define REPL_ERR_CRT_FAIL_NB 424 22950000
#define REPL_ERR_CRT_FAIL_NO_NB 425 23000000
#define REPL_ERR_DLT_FAIL_CONTOBJS 426 23050000
#define REPL_ERR_DLT_FAIL_TO_DCO 427 23100000
#define REPL_ERR_DLT_FAIL_NB 428 23150000

C Language Header File

Appendix A. C Language Header File (ACYAPHDH) 237

#define REPL_ERR_NO_LOCALDN 429 23200000
#define REPL_ERR_DUPLICATE_LDNH 430 23250000
#define REPL_REG_CREATED 431 23300000
#define REPL_CRT_COMPLETED 432 23350000
#define REPL_REG_COMPLETED 433 23400000
#define REPL_REG_SUSPENDED 434 23450000
#define REPL_ERR_ATTRTYPE_MISMATCH 435 23500000
#define REPL_ERR_CANNOT_CHANGE_NB 436 23550000
#define REPL_ERR_BULK_HAD_PROBLEMS 438 23600000
#define REPL_ERR_NB_DISALLOWS_NEWOC 439 23650000
#define REPL_ERR_SYNC_NOT_SUPPORTED 440 23700000

23800000
#define CRC_ERR_INVLD_VERBCODE 500 23836300
#define CRC_ERR_INVLD_SESSHAND 501 23872600
#define CRC_ERR_INVLD_INVOKEID 502 23908900
#define CRC_ERR_DPLCT_INVOKEID 503 23945200
#define CRC_ERR_INVLD_LINKEDID 504 23981500
#define CRC_ERR_UNABLE_TO_BUILD_MSG 505 24017800
#define CRC_ERR_INVLD_ROERRJ_RCVD 506 24054100
#define CRC_ERR_INVLD_CANCELGET 507 24090400
#define CRC_ERR_INVLD_INVOKEID_ON_CANCELGET 508 24126700
#define CRC_DELETE_RORJ_RECEIVED 509 24163000

24200000
#define SSERR_STATE_INVALID 550 24250000
#define SSERR_SPDU_INVALID 551 24300000
#define SSERR_MISSING_PI 552 24350000
#define SSERR_MISSING_UI 553 24400000
#define SSERR_VERB_INVALID 554 24450000
#define SSERR_INVALID_SUR 556 24500000
#define SSERR_USERDATA_SIZE 557 24550000
#define SSERR_TDISC_UNSPECIFIED 558 24600000
#define SSERR_TDISC_CONGESTED 559 24650000
#define SSERR_TDISC_UNATTACHED 560 24700000
#define SSERR_TDISC_ADDRESS 561 24750000
#define SSERR_VERSION 562 24800000
#define SSERR_PARTNER_ABORT 563 24850000
#define SSERR_ENCLOSURE_ITEM 564 24900000

25000000
#define MD_ERR_BAD_MDSMU 568 25050000
#define MD_ERR_SNACR_BEING_SENT 573 25100000
#define MD_ERR_SNACR_RECEIVED 574 25150000

25200000
#define SSERR_GIVE_TOKEN_NO_DATA 578 25250000
#define SSERR_DUPLICATE 581 25300000

25750000
#define ACF_EVENT_LOOP 802 25789300
#define ACF_INVALID_ASSOC_ID 803 25828600
#define ACF_INVALID_PARAMETERS 804 25867900
#define ACF_INVALID_USER_ID 806 25907200
#define ACF_RSP_BUILD_SEND_FAILED 807 25946500
#define ACF_ERR_KILL_LOC_ASSOC 808 25985800
#define ACF_UNSUPPORTED_VERB 809 26025100
#define ACF_INVALID_DEST_FORMAT 810 26064400
#define ACF_BAD_AE_TITLE_FORMAT 812 26103700
#define ACF_CANNOT_FIND_INST 814 26143000
#define ACF_NO_DESTINATION 815 26182300
#define ACF_NO_ASSOC_TEMP 817 26221600
#define ACF_MSG_REJECTED 818 26260900
#define ACF_EMPTY_DEF_LIST_RESULT 819 26300200
#define ACF_QUEUED_MESSAGE 823 26339500
#define ACF_ASSOC_ID_WRAP 824 26378800
#define ACF_AUTO_ASSOC_TEARDOWN_TERM 825 26418100
#define ACF_TOO_MANY_LOCAL_ASSOCS 826 26457400
#define ACF_DUPLICATE_AE 827 26496700
#define ACF_REMOTE_AE 828 26536000
#define ACF_INVALID_STATE_TO_RELEASE 829 26575300
#define ACF_INVALID_AE 830 26614600

C Language Header File

238 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

#define ACF_BAD_P_MODE 831 26653900
#define ACF_BAD_P_PROTOCOL_VERSION 832 26693200
#define ACF_BAD_CMIP_VERSION 833 26732500
#define ACF_BAD_APPL_CONTEXT 834 26771800
#define ACF_NO_APPL_CONTEXT 835 26811100
#define ACF_NO_APPL_INFO 836 26850400
#define ACF_BAD_DEF_LIST 837 26889700
#define ACF_WRONG_AE_TITLE 838 26929000
#define ACF_ALREADY_CONFIRMED 839 26968300
#define ACF_NO_AE_QUALIFIER 840 27007600

27050000
#define MB_ERR_PROCFAIL_NOT_OPTIONAL 900 27100000
#define MB_ERR_COMPXLIM_NOT_OPTIONAL 901 27150000
#define MB_ERR_INVALID_TYPENAME 903 27200000
#define MB_ERR_NOT_CONNECTED 904 27250000
#define MB_ERR_WRONG_LENGTH 906 27300000
#define MB_ERR_INVALID_API_TAG 907 27350000
#define MB_ERR_MISSING_API_TAG 909 27400000
#define MB_ERR_UNSUPPORTED_MSG_TYPE 913 27450000
#define MB_ERR_DELETE_PROTOCOL_ERROR 914 27500000
#define MB_ERR_DUPLICATE_TAGS 915 27550000
#define MB_ERR_CONNECTION_CONFLICT 916 27600000
#define MB_ERR_HEADER_NOT_PRESENT 917 27650000
#define MB_ERR_INVALID_STATE 919 27700000
#define MB_ERR_CMIP_ERR_RESP_ILLEGAL 921 27750000
#define MB_ERR_CMIP_ERR_RESP_STKCHK 922 27800000
#define MB_TRY_XMIT_RESP 923 27850000
#define MB_ERR_LOST_CONNECTION 925 27900000
#define MB_ERR_INVALID_NUMLOCALIDS 926 27950000
#define MB_ERR_MISSING_LOCAL_ID 928 28000000
#define MB_ERR_LOCAL_ID_ALREADY_REGISTERED 929 28050000
#define MB_ERR_INVALID_MSG_TYPE 930 28150000
#define MB_ERR_SOURCE_NOT_IN_SUBTREE 931 28200000
#define MB_ERR_CMIP_ERR_NOT_STM 933 28250000
#define MB_ERR_NOT_SUBTREE_MGR 934 28300000
#define MB_ERR_DIDNT_USE_AMPER_IID 935 28350000
#define MB_ERR_CMIP_ERR_NOTASROIV 936 28400000
#define MB_ERR_INVALID_MSG_FORMAT 937 28450000
#define MB_ERR_EMPTY_ROIV_INVALID 938 28500000
#define MB_ERR_INVALID_RESP 939 28550000
#define MB_ERR_CANCELGET_RESP_INVALID 941 28600000

28650000
#define HDR_SYNTAX_ERROR 952 28700000
#define INVALID_HDR_DEST_TYPE 953 28750000
#define INVALID_HDR_SRC_TYPE 954 28800000
#define UNRECOGNIZED_HDR_LABEL 955 28850000
#define KEY_IS_NULL 956 28900000
#define KEY_NOT_FOUND 957 28950000
#define MIB_VAR_NOT_LOADED 958 29000000

29100000
#define LABV_END_QUOTE_NOT_FOUND 961 29150000
#define LABV_NULL_VALUE 962 29200000
#define LABV_INVALID_CHAR_IN_VALUE 963 29250000
#define LABV_INVALID_GROUP_DELIMITER 964 29300000
#define LABV_EMPTY_STRING 965 29350000

29400000
#endif /* ifndef ACYAPHDH_INCLUDED */ 29450000

C Language Header File

Appendix A. C Language Header File (ACYAPHDH) 239

C Language Header File

240 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Appendix B. ASN.1 Specification of the Basic CMIP Strings

The following ASN.1 syntax is contained in the CMIP-1 ASN.1 module of the
ACYIDCMS member of the SYS1.SISTASN1 data set.
--
-- COPYRIGHT = LICENSED MATERIALS - PROPERTY OF IBM
--
-- THIS PRODUCT CONTAINS
-- "RESTRICTED MATERIALS OF IBM"
--
-- 5695-117 (C) COPYRIGHT IBM CORP. 1994
-- ALL RIGHTS RESERVED.
--
-- U.S. GOVERNMENT USERS RESTRICTED RIGHTS -
-- USE, DUPLICATION OR DISCLOSURE RESTRICTED
-- BY GSA ADP SCHEDULE CONTRACT WITH IBM CORP.
--
-- SEE COPYRIGHT INSTRUCTIONS.
--
-- Modules: CMIP-1 SMASE-A_ASSOCIATE-Information CMIP-A-Associate-Information CMIP-A-Abort-Information
-- Based on standard: CMIP
-- CMIP - based on ISO/IEC 9596-1 dated 24 November 1990
-- Modules: CMIP-A-ASSOCIATE-Information, CMIP-A-ABORT-Information, CMIP-1
-- SMO - based on ISO/IEC IS 10040 dated August 1991
-- Module: SMASE-A-ASSOCIATE-Information
--
-- __
-- | |
-- | This copy of the CMIP ASN.1 definitions has been adapted for use with |
-- | cmipWorks. It eliminates the CHOICE from the definitions of AttributeId, |
-- | ActionTypeId and EventTypeId. The resulting syntax will encode and flow |
-- | IDENTICALLY to the original productions. |
-- | |
-- | This change was made because: |
-- | It simplifies the processing of all messages - eliminating the useless |
-- | CHOICE that would need to be processed on every message. |
-- | It simplifies the interface used by applications to avoid writing |
-- | (globalForm 1.2.3) for every attribute, action and event. |
-- | It aligns with the actual use of the fields since they cannot use the |
-- | localForm unless the application context specifically allocates values |
-- | for it and assigns the correspondence to data types. |
-- | |
-- |__|
--
--
--
--
-- Differences from standard:
-- - Modify the definition of access control information to allow
-- the correct thing to be parsed. Replace the OCTET STRING with
-- a cobbled-up External.
-- - Various comments have been added for explanations, and for use by tools
-- - Module SMASE-A-ASSOCIATE-Information has an errant comma in the standard after agentRoleFunctionalUnit
-- causing the module not to parse. The problem has been corrected in this version
-- - CMIP-A-ASSOCIATE-Information
-- - None
-- - CMIP-1:
-- - IMPORTS and EXPORTS do no match standard
-- - Remote-Operations-APDUs is loosely translated as part of CMIP-1. The differences from the
-- RO standards are that the ROIV, RORS, ROER, and RORJ definitions are tagged and IMPLICIT;
-- SEQUENCE in RORSapdu has a label
-- macros are not used *** RO also in module Remote-Operations-APDUs ***
-- - ActionArgument... COMPONENTS OF... -> ObjectClass and ObjectInstance due to parser limitation
-- - ActionTypeId is defined as a CHOICE in the standards - here it is only an OI (see in line
-- comments
-- - AttributeId is defined as a CHOICE in the standards - here it is only an OI
-- - DeleteArgument... COMPONENTS OF... -> ObjectClass and ObjectInstance due to parser limitation
-- - EventTypeId is defined as a CHOICE in the standards - here it is only an OI
-- - GetArgument... COMPONENTS OF... -> ObjectClass and ObjectInstance due to parser limitation
-- - Notification added to support allomorphic Notifications (see in line comments)
-- - ObjectClass is defined as a CHOICE in the standards - here it is only an OI
-- - basicScope label put on first choice of Scope
-- - SetArgument... COMPONENTS OF... -> ObjectClass and ObjectInstance due to parser limitation
--

SMASE-A-ASSOCIATE-Information
{joint-iso-ccitt ms(9) smo(0) asn1Modules(2) negotiationDefinitions(0) version1(1)}

DEFINITIONS ::= BEGIN

-- Additional syntax to support ACSE
-- CMIP functional units

-- CMIP user info defined in SMO

© Copyright IBM Corp. 1995, 2001 241

-- Abstract syntax name for a SMASE-A-Associate-Information.SMASEUserData is
-- Joint-iso-ccitt 9 0 1 1

SMASEUserData ::= SEQUENCE
{smfuPackages SET OF FunctionalUnitPackage OPTIONAL,
-- shall be present on request/indication if SMFU
-- negotiation is proposed and on response/confirm if it
-- is accepted, otherwise it shall be omitted
reason Reason OPTIONAL,
-- may only be present on the response/confirm.
-- When SMFU negotiation fails
-- results in a reduction of proposed SMFUs
-- or the association request is rejected
-- this parameter may carry a reason for this
systemsManagementUserInformation GraphicString OPTIONAL
-- a text bucket for implementations to use to distinguish
-- between different implementation environments.
-- not subject to conformance test.
}

Reason ::= INTEGER
{smfusNotSupported (0),
-- one or more of the proposed SMFUS is not supported
smfuCombinationNotSupported (1),
-- the individual SMFUS are supported, but not in the
-- proposed combination on a single association
smfusRequiredNotAvailable (2),
-- one or more required SMFUs have been negotiated away
smfuNegotiationRefused (3)
-- responder refuses to negotiate SMFUs without saying why
}

FunctionalUnitPackage ::= SEQUENCE
{functionUnitPackageId FunctionalUnitPackageId,
managerRoleFunctionalUnit [0] IMPLICIT BIT STRING DEFAULT {},
-- if not present implies role not supported for this functional unit package
agentRoleFunctionalUnit [1] IMPLICIT BIT STRING DEFAULT {}
-- if not present implies role not supported for this functional unit package
}

FunctionalUnitPackageId ::= OBJECT IDENTIFIER
-- the values for the functionalUnitPackageId are
-- joint-iso-ccitt 9 2 X 1 where x is the defined by the standard (likely equal to the 10164-x)
-- so far, this is the case.

-- Request
-- (smfuPackages ((2.9.2.1.1,managerRoleFunctionalUnit 1111, agentRoleFunctionalUnit 1111),
-- (2.9.2.2.1, managerRoleFunctionalUnit 1, agentRoleFunctionalUnit 1),
-- (2.9.2.3.1, managerRoleFunctionalUnit 1, agentRoleFunctionalUnit 1),
-- (2.9.2.4.1, managerRoleFunctionalUnit 1, agentRoleFunctionalUnit 1),
-- (2.9.2.5.1, managerRoleFunctionalUnit 11, agentRoleFunctionalUnit 11),
-- (2.9.2.6.1, managerRoleFunctionalUnit 00, agentRoleFunctionalUnit 00) -- -- NO LOGGING
--)
--)
-- response

-- (smfuPackages ((2.9.2.1.1,managerRoleFunctionalUnit (1111), agentRoleFunctionalUnit ()),
-- (2.9.2.2.1, managerRoleFunctionalUnit (1), agentRoleFunctionalUnit ()),
-- (2.9.2.3.1, managerRoleFunctionalUnit (1), agentRoleFunctionalUnit ()),
-- (2.9.2.4.1, managerRoleFunctionalUnit (1), agentRoleFunctionalUnit ()),
-- (2.9.2.5.1, managerRoleFunctionalUnit (11), agentRoleFunctionalUnit ()),
-- (2.9.2.6.1, managerRoleFunctionalUnit (00), agentRoleFunctionalUnit ()), -- -- NO LOGGING
--),
-- reason 0
--)
END

-- Rose defines its ASE id to be joint-iso-ccitt 4 3
-- BER is joint-iso-ccitt 1 1 for the transfer syntax. this will always be used.

CMIP-A-ASSOCIATE-Information {joint-iso-ccitt ms(9) cmip(1) modules(0)aAssociateUserInfo(1)}
DEFINITIONS ::= BEGIN
--EXPORTS everything

FunctionalUnits::= BIT STRING --+ VL-NAME = CMIS-Functional-Units
{ multipleObjectSelection (0)
--+ ELEM-NAME = multiple-Object-Selection
--+ H-ELEM-NAME = "MP_T_FU_MULTIPLE_FUNCTIONAL_UNITS"
--+ H-ELEM-ID = 4
,
filter (1)
--+ ELEM-NAME = filter
--+ H-ELEM-NAME = "MP_T_FU_FILTER"
--+ H-ELEM-ID = 2
,
multipleReply (2)
--+ ELEM-NAME = multiple-Reply
--+ H-ELEM-NAME = "MP_T_FU_MULTIPLE_REPLY"

ASN.1

242 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

--+ H-ELEM-ID = 16
,
extendedService (3)
--+ ELEM-NAME = extended-Service
--+ H-ELEM-NAME = "MP_T_FU_EXTENDED_SERVICE"
--+ H-ELEM-ID = 8
,
cancelGet (4)
--+ ELEM-NAME = cancel-Get
--+ H-ELEM-NAME = "MP_T_FU_CANCEL_GET"
--+ H-ELEM-ID = 1
}

-- Functional unit i is supported if and only if bit i is one.
-- information carried in user-information parameter of A-ASSOCIATE

CMIPUserInfo::= SEQUENCE { protocolVersion [0] IMPLICIT ProtocolVersion DEFAULT { version1 },
functionalUnits [1] IMPLICIT FunctionalUnits DEFAULT {},
accessControl [2] EXTERNAL OPTIONAL,
userInfo [3] EXTERNAL OPTIONAL }

ProtocolVersion::= BIT STRING { version1 (0),
version2 (1) }

END

CMIP-A-ABORT-Information {joint-iso-ccitt ms(9) cmip(1) modules(0)aAbortUserInfo(2)}
DEFINITIONS ::= BEGIN

-- information carried in user-information parameter of A-ABORT

CMIPAbortInfo ::= SEQUENCE { abortSource [0] IMPLICIT CMIPAbortSource,
userInfo [1] EXTERNAL OPTIONAL }

CMIPAbortSource ::= ENUMERATED { cmiseServiceUser (0),
cmiseServiceProvider (1) }

END

CMIP-1 {joint-iso-ccitt ms(9) cmip(1) modules(0) protocol(3)}

DEFINITIONS ::= BEGIN

-- The IMPORTS statement was removed to allow compilation without ROSE.asn
-- IMPORTS InvokeIDType, Operation, Error
-- FROM Remote-Operations-APDUs ;
-- EXPORTS everything

-- Directory Service definitions
IMPORTS RDNSequence, DistinguishedName
FROM InformationFramework {joint-iso-ccitt ds(5) modules(1) informationFramework(1)};

-- EXPORTS DistinguishedName, RDN;

-- added to allow compilation of the CMP file without ROSE
-- and without the rose macros.
InvokeIDType ::= INTEGER
Operation ::= INTEGER
Error ::= INTEGER

-- ADDED to allow extern information for access control
ExternDefault ::= [UNIVERSAL 8] IMPLICIT SEQUENCE {

direct-reference OBJECT IDENTIFIER OPTIONAL,
indirect-reference INTEGER OPTIONAL,
encoding CHOICE {

single-ASN1-type [0] ANY,
octet-aligned [1] IMPLICIT OCTET STRING,
arbitrary [2] IMPLICIT BIT STRING

}
}

-- Added to allow the missingAttributeValue error syntax to be resolved
-- The parameter template says SET OF AttributeId - not a very friendly type.
AttributeIds ::= SET OF AttributeId

ROSEapdus ::= CHOICE {
roiv-apdu [1] IMPLICIT ROIVapdu,
rors-apdu [2] IMPLICIT RORSapdu,
roer-apdu [3] IMPLICIT ROERapdu,
rorj-apdu [4] IMPLICIT RORJapdu
}

ASN.1

Appendix B. ASN.1 Specification of the Basic CMIP Strings 243

ROIVapdu ::= [1] IMPLICIT SEQUENCE
{invokeID InvokeIDType,
linked-ID [0] IMPLICIT InvokeIDType OPTIONAL,
operation-value Operation,
argument ANY DEFINED BY operation-value --% ANY_TABLE_REF(Operations) %-- OPTIONAL
}

--% Operations ANY_TABLE ::=
--% {
--% m-EventReport EventReportArgument,
--% m-EventReport-Confirmed EventReportArgument,
--% m-Linked-Reply LinkedReplyArgument,
--% m-Get GetArgument,
--% m-Set SetArgument,
--% m-Set-Confirmed SetArgument,
--% m-Action ActionArgument,
--% m-Action-Confirmed ActionArgument,
--% m-Create CreateArgument,
--% m-Delete DeleteArgument,
--% m-CancelGet InvokeIDType
--% }

m-EventReport Operation ::= 0
m-EventReport-Confirmed Operation ::= 1
m-Linked-Reply Operation ::= 2
m-Get Operation ::= 3
m-Set Operation ::= 4
m-Set-Confirmed Operation ::= 5
m-Action Operation ::= 6
m-Action-Confirmed Operation ::= 7
m-Create Operation ::= 8
m-Delete Operation ::= 9
m-CancelGet Operation ::= 10

RORSapdu ::= [2] IMPLICIT SEQUENCE
{invokeID InvokeIDType,
resultOption SEQUENCE
{operation-value Operation,
result ANY DEFINED BY operation-value --% ANY_TABLE_REF(Results)
} OPTIONAL

}
-- Note that m-CancelGet is not included in the list. This message does not
-- have an associated parameter and should only be responed to with an invokeID
--% Results ANY_TABLE ::=
--% {
--% m-Action-Confirmed ActionResult,
--% m-Create CreateResult,
--% m-Delete DeleteResult,
--% m-EventReport-Confirmed EventReportResult,
--% m-Get GetResult,
--% m-Set-Confirmed SetResult
--% }

ROERapdu ::= [3] IMPLICIT SEQUENCE
{invokeID InvokeIDType,
error-value Error,
parameter ANY DEFINED BY error-value --% ANY_TABLE_REF(Errors) %-- OPTIONAL
}

-- Note that the errors accessDenied, mistypedOperation and operationCancelled
-- are not included in the following list. These errors do not have information
-- associated with them so the 'parameter' field should never be present.
--% Errors ANY_TABLE ::=
--% {
--% classInstanceConflict BaseManagedObjectId,
--% complexityLimitation ComplexityLimitation,
--% duplicateManagedObjectInstance ObjectInstance,
--% getListError GetListError,
--% invalidArgumentValue InvalidArgumentValue,
--% invalidAttributeValue Attribute,
--% invalidFilter CMISFilter,
--% invalidObjectInstance ObjectInstance,
--% invalidScope Scope,
--% missingAttributeValue AttributeIds,
--% noSuchAction NoSuchAction,
--% noSuchArgument NoSuchArgument,
--% noSuchAttribute AttributeId,
--% noSuchEventType NoSuchEventType,
--% noSuchInvokeId InvokeIDType,
--% noSuchObjectClass ObjectClass,
--% noSuchObjectInstance ObjectInstance,
--% noSuchReferenceObject ObjectInstance,
--% processingFailure ProcessingFailure,
--% setListError SetListError,
--% syncNotSupported CMISSync
--% }

accessDenied Error ::= 2

ASN.1

244 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

classInstanceConflict Error ::= 19
complexityLimitation Error ::= 20
duplicateManagedObjectInstance Error ::= 11
getListError Error ::= 7
invalidArgumentValue Error ::= 15
invalidAttributeValue Error ::= 6
invalidFilter Error ::= 4
invalidObjectInstance Error ::= 17
invalidOperation Error ::= 24
invalidScope Error ::= 16
missingAttributeValue Error ::= 18
mistypedOperation Error ::= 21
noSuchAction Error ::= 9
noSuchArgument Error ::= 14
noSuchAttribute Error ::= 5
noSuchEventType Error ::= 13
noSuchInvokeId Error ::= 22
noSuchObjectClass Error ::= 0
noSuchObjectInstance Error ::= 1
noSuchReferenceObject Error ::= 12
operationCancelled Error ::= 23
processingFailure Error ::= 10
setListError Error ::= 8
syncNotSupported Error ::= 3

-- Labels have been added to the problem CHOICE to allow it to be correctly processed
RORJapdu ::= [4] IMPLICIT SEQUENCE

{invokeID CHOICE{InvokeIDType,NULL},
problem CHOICE
{generalProblem [0] IMPLICIT GeneralProblem,
invokeProblem [1] IMPLICIT InvokeProblem,
returnResultProblem [2] IMPLICIT ReturnResultProblem,
returnErrorProblem [3] IMPLICIT ReturnErrorProblem
}

}

-- The following problems are detected by ROSE-providers:

GeneralProblem ::= INTEGER
{
unrecognisedAPDU(0),
mistypedAPDU(1),
badlyStructuredAPDU(2)
}

-- The following problems are detected by ROSE-users:

InvokeProblem ::= INTEGER
{
duplicateInvocation(0),
unrecognisedOperation(1),
mistypedArgument(2),
resourceLimitation(3),
initiatorReleasing(4),
unrecognizedLinkedID(5),
linkedResponseUnexpected(6),
unexpectedChildOperation(7)
}

ReturnResultProblem ::= INTEGER
{
unrecognisedInvocation(0),
resultResponseUnexpected(1),
mistypedResponse(2)
}

ReturnErrorProblem ::= INTEGER
{
unrecognisedInvocation(0),
errorResponseUnexpected(1),
unrecognisedError(2),
unexpectedError(3),
mistypedParameter(4)
}

AccessControl::= --+ CL-NAME = Access-Control
--+ CL-TYPE = 5
--+ H-CL-NAME = "OMP_O_MP_C_ACCESS_CONTROL"
--+ H-CL-ID = 1001
ExternDefault -- EXTERNAL in 9596

ActionArgument::= --+ SUPER-CLASS = Action-Argument
--+ CL-NAME = CMIS-Action-Argument
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_CMIS_ACTION_ARGUMENT"
--+ H-CL-ID = 2012

ASN.1

Appendix B. ASN.1 Specification of the Basic CMIP Strings 245

SEQUENCE { baseManagedObjectClass ObjectClass
--+ ATTR-NAME = base-Managed-Object-Class
--+ H-ATTR-NAME = "MP_BASE_MANAGED_OBJECT_CLASS"
--+ H-ATTR-ID = 2023
--+ ATTR-SYNTAX = 127 "Object-Class"
--+ VALUE-NUMBER = 1

,
baseManagedObjectInstance ObjectInstance

--+ ATTR-NAME = base-Managed-Object-Instance
--+ H-ATTR-NAME = "MP_BASE_MANAGED_OBJECT_INSTANCE"
--+ H-ATTR-ID = 2024
--+ ATTR-SYNTAX = 127 "Object-Instance"
--+ VALUE-NUMBER = 1

,
accessControl [5] AccessControl OPTIONAL

--+ ATTR-NAME = access-Control
--+ H-ATTR-NAME = "MP_ACCESS_CONTROL"
--+ H-ATTR-ID = 1001
--+ ATTR-SYNTAX = 127 "Access-Control"
--+ VALUE-NUMBER = 0

,
synchronization [6] IMPLICIT CMISSync DEFAULT bestEffort

--+ ATTR-NAME = synchronization
--+ H-ATTR-NAME = "MP_SYNCHRONIZATION"
--+ H-ATTR-ID = 2080
--+ ATTR-SYNTAX = 10 "CMIS-Sync"
--+ VALUE-NUMBER = 0

,
scope [7] Scope DEFAULT basicScope : baseObject

--+ ATTR-NAME = scope
--+ H-ATTR-NAME = "MP_SCOPE"
--+ H-ATTR-ID = 2070
--+ ATTR-SYNTAX = 127 "Scope"
--+ VALUE-NUMBER = 0

,
filter CMISFilter DEFAULT and:{}

--+ ATTR-NAME = filter
--+ H-ATTR-NAME = "MP_FILTER"
--+ H-ATTR-ID = 2043
--+ ATTR-SYNTAX = 127 "CMIS-Filter"
--+ VALUE-NUMBER = 0

,
actionInfo [12] IMPLICIT ActionInfo

--+ ATTR-NAME = action-Info
--+ H-ATTR-NAME = "MP_ACTION_INFO"
--+ H-ATTR-ID = 2005
--+ ATTR-SYNTAX = 127 "Action-Info"
--+ VALUE-NUMBER = 1

}

ActionError::= --+ CL-NAME = Action-Error
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_ACTION_ERROR"
--+ H-CL-ID = 2001
SEQUENCE { managedObjectClass ObjectClass OPTIONAL

--+ ATTR-NAME = managed-Object-Class
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"
--+ H-ATTR-ID = 2057
--+ ATTR-SYNTAX = 127 "Object-Class"
--+ VALUE-NUMBER = 0

,
managedObjectInstance ObjectInstance OPTIONAL

--+ ATTR-NAME = managed-Object-Instance
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"
--+ H-ATTR-ID = 2058
--+ ATTR-SYNTAX = 127 "Object-Instance"
--+ VALUE-NUMBER = 0

,
currentTime [5] IMPLICIT GeneralizedTime OPTIONAL

--+ ATTR-NAME = current-Time
--+ H-ATTR-NAME = "MP_CURRENT_TIME"
--+ H-ATTR-ID = 2027
--+ ATTR-SYNTAX = 24
-- Time
--+ VALUE-NUMBER = 0

,
actionErrorInfo [6] ActionErrorInfo

--+ ATTR-NAME = action-Error-Info
--+ H-ATTR-NAME = "MP_ACTION_ERROR_INFO"
--+ H-ATTR-ID = 2003
--+ ATTR-SYNTAX = 127 "Action-Error-Info"
--+ VALUE-NUMBER = 1

}

ActionErrorInfo::= --+ CL-NAME = Action-Error-Info
--+ CL-TYPE = 3

ASN.1

246 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

--+ H-CL-NAME = "OMP_O_MP_C_ACTION_ERROR_INFO"
--+ H-CL-ID = 2002
SEQUENCE { errorStatus ENUMERATED --+ VL-NAME = Error-Status

{ accessDenied (2)
--+ ELEM-NAME = access-Denied
--+ H-ELEM-NAME = "MP_E_ACCESS_DENIED"
--+ H-ELEM-ID = 2
,
noSuchAction (9)
--+ ELEM-NAME = no-Such-Action
--+ H-ELEM-NAME = "MP_E_NO_SUCH_ACTION"
--+ H-ELEM-ID = 9
,
noSuchArgument (14)
--+ ELEM-NAME = no-Such-Argument
--+ H-ELEM-NAME = "MP_E_NO_SUCH_ARGUMENT"
--+ H-ELEM-ID = 14
,
invalidArgumentValue (15)
--+ ELEM-NAME = invalid-Argument-Value
--+ H-ELEM-NAME = "MP_E_INVALID_ARGUMENT_VALUE"
--+ H-ELEM-ID = 15
}

--+ ATTR-NAME = error-Status
--+ H-ATTR-NAME = "MP_ERROR_STATUS"
--+ H-ATTR-ID = 2035
--+ ATTR-SYNTAX = 10 "Error-Status"
--+ VALUE-NUMBER = 1

,
errorInfo CHOICE { actionType ActionTypeId

--+ ATTR-NAME = action-Type
--+ H-ATTR-NAME = "MP_ACTION_TYPE"
--+ H-ATTR-ID = 2010
--+ ATTR-SYNTAX = 127 "Action-Type-Id"
--+ VALUE-NUMBER = 0

,
actionArgument [0] NoSuchArgument

--+ ATTR-NAME = action-Argument
--+ H-ATTR-NAME = "MP_ACTION_ARGUMENT"
--+ H-ATTR-ID = 2001
--+ ATTR-SYNTAX = 127 "No-Such-Argument"
--+ VALUE-NUMBER = 0

,
argumentValue [1] InvalidArgumentValue

--+ ATTR-NAME = argument-Value
--+ H-ATTR-NAME = "MP_ARGUMENT_VALUE"
--+ H-ATTR-ID = 2014
--+ ATTR-SYNTAX = 127 "Invalid-Argument-Value"
--+ VALUE-NUMBER = 0

}
--+ ATTR-NAME = error-Info
--+ H-ATTR-NAME = "MP_ERROR_INFO"
--+ H-ATTR-ID = 2034
--+ ATTR-SYNTAX = 127 "Error-Info"
--+ VALUE-NUMBER = 1
--+ CL-NAME = Error-Info
--+ CL-TYPE = 0
--+ H-CL-NAME = "OMP_O_MP_C_ERROR_INFO"
--+ H-CL-ID = 2033

}

ActionInfo::= --+ CL-NAME = Action-Info
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_ACTION_INFO"
--+ H-CL-ID = 2003
SEQUENCE { actionType ActionTypeId

--+ ATTR-NAME = action-Type
--+ H-ATTR-NAME = "MP_ACTION_TYPE"
--+ H-ATTR-ID = 2010
--+ ATTR-SYNTAX = 127 "Action-Type-Id"
--+ VALUE-NUMBER = 1

,
actionInfoArg [4] ANY DEFINED BY actionType

--% ANY_TABLE_REF(ActionInfoTableMod.ActionInfoTypes) %-- OPTIONAL
--+ ATTR-NAME = action-Info-Arg
--+ H-ATTR-NAME = "MP_ACTION_INFO_ARG"
--+ H-ATTR-ID = 2006
--+ ATTR-SYNTAX = 8
--+ VALUE-NUMBER = 0

}

ActionReply::= --+ CL-NAME = Action-Reply
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_ACTION_REPLY"
--+ H-CL-ID = 2004
SEQUENCE { actionType ActionTypeId

ASN.1

Appendix B. ASN.1 Specification of the Basic CMIP Strings 247

--+ ATTR-NAME = action-Type
--+ H-ATTR-NAME = "MP_ACTION_TYPE"
--+ H-ATTR-ID = 2010
--+ ATTR-SYNTAX = 127 "Action-Type-Id"
--+ VALUE-NUMBER = 1

,
actionReplyInfo [4] ANY DEFINED BY actionType

--% ANY_TABLE_REF(ActionReplyTableMod.ActionReplyTypes)
--+ ATTR-NAME = action-Reply-Info
--+ H-ATTR-NAME = "MP_ACTION_REPLY_INFO"
--+ H-ATTR-ID = 2008
--+ ATTR-SYNTAX = 8
--+ VALUE-NUMBER = 1

}

ActionResult::= --+ SUPER-CLASS = Action-Result
--+ CL-NAME = CMIS-Action-Result
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_CMIS_ACTION_RESULT"
--+ H-CL-ID = 2013
SEQUENCE { managedObjectClass ObjectClass OPTIONAL

--+ ATTR-NAME = managed-Object-Class
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"
--+ H-ATTR-ID = 2057
--+ ATTR-SYNTAX = 127 "Object-Class"
--+ VALUE-NUMBER = 0

,
managedObjectInstance ObjectInstance OPTIONAL

--+ ATTR-NAME = managed-Object-Instance
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"
--+ H-ATTR-ID = 2058
--+ ATTR-SYNTAX = 127 "Object-Instance"
--+ VALUE-NUMBER = 0

,
currentTime [5] IMPLICIT GeneralizedTime OPTIONAL

--+ ATTR-NAME = current-Time
--+ H-ATTR-NAME = "MP_CURRENT_TIME"
--+ H-ATTR-ID = 2027
--+ ATTR-SYNTAX = 24
--+ VALUE-NUMBER = 0

,
actionReply [6] IMPLICIT ActionReply OPTIONAL

--+ ATTR-NAME = action-Reply
--+ H-ATTR-NAME = "MP_ACTION_REPLY"
--+ H-ATTR-ID = 2007
--+ ATTR-SYNTAX = 127 "Action-Reply"
--+ VALUE-NUMBER = 0

}

-- This has been adapted to align with the comments below.
-- The CHOICE has been eliminated to simplify processing
-- and the use of the API.
ActionTypeId::= [2] IMPLICIT OBJECT IDENTIFIER
-- This [Recommendation | part of ISO/IEC 9596] does not allocate any values for
-- localForm.
-- Where this alternative is used, the permissible values for the integers
-- and their meanings shall be defined as part of the application context
-- in which they are used.

Attribute::= --+ CL-NAME = Attribute
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_ATTRIBUTE"
--+ H-CL-ID = 2006
SEQUENCE { attributeId AttributeId

--+ ATTR-NAME = attribute-Id
--+ H-ATTR-NAME = "MP_ATTRIBUTE_ID"
--+ H-ATTR-ID = 2017
--+ ATTR-SYNTAX = 127 "Attribute-Id"
--+ VALUE-NUMBER = 1

,
attributeValue ANY DEFINED BY attributeId

--% ANY_TABLE_REF(AttributeTableMod.AttributeTypes)
--+ ATTR-NAME = attribute-Value
--+ H-ATTR-NAME = "MP_ATTRIBUTE_VALUE"
--+ H-ATTR-ID = 2022
--+ ATTR-SYNTAX = 8
--+ VALUE-NUMBER = 1

}

AttributeError::= --+ CL-NAME = Attribute-Error
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_ATTRIBUTE_ERROR"
--+ H-CL-ID = 2007
SEQUENCE { errorStatus ENUMERATED --+ VL-NAME = Error-Status

{ accessDenied (2),
noSuchAttribute (5)
--+ ELEM-NAME = no-Such-Attribute

ASN.1

248 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

--+ H-ELEM-NAME = "MP_E_NO_SUCH_ATTRIBUTE"
--+ H-ELEM-ID = 5
,
invalidAttributeValue (6)
--+ ELEM-NAME = invalid-Attribute-Value
--+ H-ELEM-NAME = "MP_E_INVALID_ATTRIBUTE_VALUE"
--+ H-ELEM-ID = 6
,
invalidOperation (24)
--+ ELEM-NAME = invalid-Operation
--+ H-ELEM-NAME = "MP_E_INVALID_OPERATION"
--+ H-ELEM-ID = 24
,
invalidOperator (25)
--+ ELEM-NAME = invalid-Operator
--+ H-ELEM-NAME = "MP_E_INVALID_OPERATOR"
--+ H-ELEM-ID = 25
}

--+ ATTR-NAME = error-Status
--+ H-ATTR-NAME = "MP_ERROR_STATUS"
--+ H-ATTR-ID = 2035
--+ ATTR-SYNTAX = 10 "Error-Status"
--+ VALUE-NUMBER = 1

,
modifyOperator [2] IMPLICIT ModifyOperator OPTIONAL

--+ ATTR-NAME = modify-Operator
--+ H-ATTR-NAME = "MP_MODIFY_OPERATOR"
--+ H-ATTR-ID = 2060
--+ ATTR-SYNTAX = 10 "Modify-Operator"
--+ VALUE-NUMBER = 0

,
attributeId AttributeId

--+ ATTR-NAME = attribute-Id
--+ H-ATTR-NAME = "MP_ATTRIBUTE_ID"
--+ H-ATTR-ID = 2017
--+ ATTR-SYNTAX = 127 "Attribute-Id"
--+ VALUE-NUMBER = 1

,
attributeValue ANY DEFINED BY attributeId

--% ANY_TABLE_REF(AttributeTableMod.AttributeTypes) %-- OPTIONAL
--+ ATTR-NAME = attribute-Value
--+ H-ATTR-NAME = "MP_ATTRIBUTE_VALUE"
--+ H-ATTR-ID = 2022
--+ ATTR-SYNTAX = 8
--+ VALUE-NUMBER = 0

}

-- This has been adapted to align with the comments below.
-- The CHOICE has been eliminated to simplify processing
-- and the use of the API.
AttributeId ::= [0] IMPLICIT OBJECT IDENTIFIER
-- This [Recommendation | part of ISO/IEC 9596] does not allocate any values for
-- localForm.
-- Where this alternative is used, the permissible values for the integers
-- and their meanings shall be defined as part of the application context
-- in which they are used.

AttributeIdError::= --+ CL-NAME = Attribute-Id-Error
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_ATTRIBUTE_ID_ERROR"
--+ H-CL-ID = 2009
SEQUENCE { errorStatus ENUMERATED { accessDenied (2),

noSuchAttribute (5) }
--+ ATTR-NAME = error-Status
--+ H-ATTR-NAME = "MP_ERROR_STATUS"
--+ H-ATTR-ID = 2035
--+ ATTR-SYNTAX = 10 "Error-Status"
--+ VALUE-NUMBER = 1

,
attributeId AttributeId

--+ ATTR-NAME = attribute-Id
--+ H-ATTR-NAME = "MP_ATTRIBUTE_ID"
--+ H-ATTR-ID = 2017
--+ ATTR-SYNTAX = 127 "Attribute-Id"
--+ VALUE-NUMBER = 1

}

BaseManagedObjectId::= --+ CL-NAME = Base-Managed-Object-Id
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_BASE_MANAGED_OBJETC_ID"
--+ H-CL-ID = 2011
SEQUENCE { baseManagedObjectClass ObjectClass

--+ ATTR-NAME = base-Managed-Object-Class
--+ H-ATTR-NAME = "MP_BASE_MANAGED_OBJECT_CLASS"
--+ H-ATTR-ID = 2023
--+ ATTR-SYNTAX = 127 "Object-Class"
--+ VALUE-NUMBER = 1

,

ASN.1

Appendix B. ASN.1 Specification of the Basic CMIP Strings 249

baseManagedObjectInstance ObjectInstance
--+ ATTR-NAME = base-Managed-Object-Instance
--+ H-ATTR-NAME = "MP_BASE_MANAGED_OBJECT_INSTANCE"
--+ H-ATTR-ID = 2024
--+ ATTR-SYNTAX = 127 "Object-Instance"
--+ VALUE-NUMBER = 1

}

CMISFilter::= --+ CL-NAME = CMIS-Filter
--+ CL-TYPE = 0
--+ H-CL-NAME = "OMP_O_MP_C_CMIS_FILTER"
--+ H-CL-ID = 2021
CHOICE { item [8] FilterItem

--+ ATTR-NAME = item
--+ H-ATTR-NAME = "MP_ITEM"
--+ H-ATTR-ID = 2053
--+ ATTR-SYNTAX = 127 "Filter-Item"
--+ VALUE-NUMBER = 0

,
and [9] IMPLICIT SET OF CMISFilter

--+ ATTR-NAME = and
--+ H-ATTR-NAME = "MP_AND"
--+ H-ATTR-ID = 2012
--+ ATTR-SYNTAX = 127 "CMIS-Filter"
--+ VALUE-NUMBER = 2

,
or [10] IMPLICIT SET OF CMISFilter

--+ ATTR-NAME = or
--+ H-ATTR-NAME = "MP_OR"
--+ H-ATTR-ID = 2065
--+ ATTR-SYNTAX = 127 "CMIS-Filter"
--+ VALUE-NUMBER = 2

,
not [11] CMISFilter

--+ ATTR-NAME = not
--+ H-ATTR-NAME = "MP_NOT"
--+ H-ATTR-ID = 2064
--+ ATTR-SYNTAX = 127 "CMIS-Filter"
--+ VALUE-NUMBER = 0

}

CMISSync::= ENUMERATED --+ VL-NAME = CMIS-Sync
{ bestEffort (0)
--+ ELEM-NAME = best-effort
--+ H-ELEM-NAME = "MP_T_BEST_EFFORT"
--+ H-ELEM-ID = 0
,
atomic (1)
--+ ELEM-NAME = atomic
--+ H-ELEM-NAME = "MP_T_ATOMIC"
--+ H-ELEM-ID = 1
}

ComplexityLimitation::= --+ CL-NAME = Complexity-Limitation
--+ CL-TYPE = 1
--+ H-CL-NAME = "OMP_O_MP_C_COMPLEXITY_LIMITATION"
--+ H-CL-ID = 2030
SET { scope [0] Scope OPTIONAL

--+ ATTR-NAME = scope
--+ H-ATTR-NAME = "MP_SCOPE"
--+ H-ATTR-ID = 2070
--+ ATTR-SYNTAX = 127 "Scope"
--+ VALUE-NUMBER = 0

,
filter [1] CMISFilter OPTIONAL

--+ ATTR-NAME = filter
--+ H-ATTR-NAME = "MP_FILTER"
--+ H-ATTR-ID = 2043
--+ ATTR-SYNTAX = 127 "CMIS-Filter"
--+ VALUE-NUMBER = 0

,
sync [2] CMISSync OPTIONAL

--+ ATTR-NAME = synchronization
--+ H-ATTR-NAME = "MP_SYNCHRONIZATION"
--+ H-ATTR-ID = 2080
--+ ATTR-SYNTAX = 10 "CMIS-Sync"
--+ VALUE-NUMBER = 0

}

CreateArgument::= --+ SUPER-CLASS = Create-Argument
--+ CL-NAME = CMIS-Create-Argument
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_CMIS_CREATE_ARGUMENT"
--+ H-CL-ID = 2015
SEQUENCE { managedObjectClass ObjectClass

--+ ATTR-NAME = managed-Object-Class

ASN.1

250 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"
--+ H-ATTR-ID = 2057
--+ ATTR-SYNTAX = 127 "Object-Class"
--+ VALUE-NUMBER = 1

,
CHOICE { managedObjectInstance ObjectInstance

--+ ATTR-NAME = managed-Object-Instance
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"
--+ H-ATTR-ID = 2058
--+ ATTR-SYNTAX = 127 "Object-Instance"
--+ VALUE-NUMBER = 0

,
superiorObjectInstance [8] ObjectInstance

--+ ATTR-NAME = superior-Object-Instance
--+ H-ATTR-NAME = "MP_SUPERIOR_OBJECT_INSTANCE"
--+ H-ATTR-ID = 2078
--+ ATTR-SYNTAX = 127 "Object-Instance"
--+ VALUE-NUMBER = 0

} OPTIONAL
--+ ATTR-NAME = create-Object-Instance
--+ H-ATTR-NAME = "MP_CREATE_OBJECT_INSTANCE"
--+ H-ATTR-ID = 2026
--+ ATTR-SYNTAX = 127 "Create-Object-Instance"
--+ VALUE-NUMBER = 0
--+ CL-NAME = Create-Object-Instance
--+ CL-TYPE = 0
--+ H-CL-NAME = "OMP_O_MP_C_CREATE_OBJECT_INSTANCE"
--+ H-CL-ID = 2031

,
accessControl [5] AccessControl OPTIONAL

--+ ATTR-NAME = access-Control
--+ H-ATTR-NAME = "MP_ACCESS_CONTROL"
--+ H-ATTR-ID = 1001
--+ ATTR-SYNTAX = 127 "Access-Control"
--+ VALUE-NUMBER = 0

,
referenceObjectInstance [6] ObjectInstance OPTIONAL

--+ ATTR-NAME = reference-Object-Instance
--+ H-ATTR-NAME = "MP_REFERENCE_OBJECT_INSTANCE"
--+ H-ATTR-ID = 2068
--+ ATTR-SYNTAX = 127 "Object-Instance"
--+ VALUE-NUMBER = 0

,
attributeList [7] IMPLICIT SET OF Attribute OPTIONAL

--+ ATTR-NAME = attribute-List
--+ H-ATTR-NAME = "MP_ATTRIBUTE_LIST"
--+ H-ATTR-ID = 2021
--+ ATTR-SYNTAX = 127 "Attribute"
--+ VALUE-NUMBER = 2

}

CreateResult::= --+ SUPER-CLASS = Create-Result
--+ CL-NAME = CMIS-Create-Result
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_CMIS_CREATE_RESULT"
--+ H-CL-ID = 2016
SEQUENCE { managedObjectClass ObjectClass OPTIONAL

--+ ATTR-NAME = managed-Object-Class
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"
--+ H-ATTR-ID = 2057
--+ ATTR-SYNTAX = 127 "Object-Class"
--+ VALUE-NUMBER = 0

,
managedObjectInstance ObjectInstance OPTIONAL

--+ ATTR-NAME = managed-Object-Instance
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"
--+ H-ATTR-ID = 2058
--+ ATTR-SYNTAX = 127 "Object-Instance"
--+ VALUE-NUMBER = 0

,
-- shall be returned if omitted from CreateArgument
currentTime [5] IMPLICIT GeneralizedTime OPTIONAL

--+ ATTR-NAME = current-Time
--+ H-ATTR-NAME = "MP_CURRENT_TIME"
--+ H-ATTR-ID = 2027
--+ ATTR-SYNTAX = 24
--+ VALUE-NUMBER = 0

,
attributeList [6] IMPLICIT SET OF Attribute OPTIONAL

--+ ATTR-NAME = attribute-List
--+ H-ATTR-NAME = "MP_ATTRIBUTE_LIST"
--+ H-ATTR-ID = 2021
--+ ATTR-SYNTAX = 127 "Attribute"
--+ VALUE-NUMBER = 2

}

ASN.1

Appendix B. ASN.1 Specification of the Basic CMIP Strings 251

DeleteArgument::= --+ SUPER-CLASS = Delete-Argument
--+ CL-NAME = CMIS-Delete-Argument
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_CMIS_DELETE_ARGUMENT"
--+ H-CL-ID = 2017
SEQUENCE { baseManagedObjectClass ObjectClass

--+ ATTR-NAME = base-Managed-Object-Class
--+ H-ATTR-NAME = "MP_BASE_MANAGED_OBJECT_CLASS"
--+ H-ATTR-ID = 2023
--+ ATTR-SYNTAX = 127 "Object-Class"
--+ VALUE-NUMBER = 1

,
baseManagedObjectInstance ObjectInstance

--+ ATTR-NAME = base-Managed-Object-Instance
--+ H-ATTR-NAME = "MP_BASE_MANAGED_OBJECT_INSTANCE"
--+ H-ATTR-ID = 2024
--+ ATTR-SYNTAX = 127 "Object-Instance"
--+ VALUE-NUMBER = 1

,
accessControl [5] AccessControl OPTIONAL

--+ ATTR-NAME = access-Control
--+ H-ATTR-NAME = "MP_ACCESS_CONTROL"
--+ H-ATTR-ID = 1001
--+ ATTR-SYNTAX = 127 "Access-Control"
--+ VALUE-NUMBER = 0

,
synchronization [6] IMPLICIT CMISSync DEFAULT bestEffort

--+ ATTR-NAME = synchronization
--+ H-ATTR-NAME = "MP_SYNCHRONIZATION"
--+ H-ATTR-ID = 2080
--+ ATTR-SYNTAX = 10 "CMIS-Sync"
--+ VALUE-NUMBER = 0

,
scope [7] Scope DEFAULT basicScope : baseObject

--+ ATTR-NAME = scope
--+ H-ATTR-NAME = "MP_SCOPE"
--+ H-ATTR-ID = 2070
--+ ATTR-SYNTAX = 127 "Scope"
--+ VALUE-NUMBER = 0

,
filter CMISFilter DEFAULT and:{}

--+ ATTR-NAME = filter
--+ H-ATTR-NAME = "MP_FILTER"
--+ H-ATTR-ID = 2043
--+ ATTR-SYNTAX = 127 "CMIS-Filter"
--+ VALUE-NUMBER = 0

}

DeleteError::= --+ CL-NAME = Delete-Error
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_DELETE_ERROR"
--+ H-CL-ID = 2032
SEQUENCE { managedObjectClass ObjectClass OPTIONAL

--+ ATTR-NAME = managed-Object-Class
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"
--+ H-ATTR-ID = 2057
--+ ATTR-SYNTAX = 127 "Object-Class"
--+ VALUE-NUMBER = 0

,
managedObjectInstance ObjectInstance OPTIONAL

--+ ATTR-NAME = managed-Object-Instance
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"
--+ H-ATTR-ID = 2058
--+ ATTR-SYNTAX = 127 "Object-Instance"
--+ VALUE-NUMBER = 0

,
currentTime [5] IMPLICIT GeneralizedTime OPTIONAL

--+ ATTR-NAME = current-Time
--+ H-ATTR-NAME = "MP_CURRENT_TIME"
--+ H-ATTR-ID = 2027
--+ ATTR-SYNTAX = 24
--+ VALUE-NUMBER = 0

,
deleteErrorInfo [6] ENUMERATED --+ VL-NAME = Delete-Error-Info

{ accessDenied (2)
--+ ELEM-NAME = access-Denied
--+ H-ELEM-NAME = "MP_E_ACCESS_DENIED"
--+ H-ELEM-ID = 2
}

--+ ATTR-NAME = delete-Error-Info
--+ H-ATTR-NAME = "MP_DELETE_ERROR_INFO"
--+ H-ATTR-ID = 2029
--+ ATTR-SYNTAX = 10 "Delete-Error-Info"
--+ VALUE-NUMBER = 1

}

ASN.1

252 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

DeleteResult::= --+ SUPER-CLASS = Delete-Result
--+ CL-NAME = CMIS-Delete-Result
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_CMIS_DELETE_RESULT"
--+ H-CL-ID = 2018
SEQUENCE { managedObjectClass ObjectClass OPTIONAL

--+ ATTR-NAME = managed-Object-Class
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"
--+ H-ATTR-ID = 2057
--+ ATTR-SYNTAX = 127 "Object-Class"
--+ VALUE-NUMBER = 0

,
managedObjectInstance ObjectInstance OPTIONAL

--+ ATTR-NAME = managed-Object-Instance
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"
--+ H-ATTR-ID = 2058
--+ ATTR-SYNTAX = 127 "Object-Instance"
--+ VALUE-NUMBER = 0

,
currentTime [5] IMPLICIT GeneralizedTime OPTIONAL

--+ ATTR-NAME = current-Time
--+ H-ATTR-NAME = "MP_CURRENT_TIME"
--+ H-ATTR-ID = 2027
--+ ATTR-SYNTAX = 24
--+ VALUE-NUMBER = 0

}

EventReply::= --+ CL-NAME = Event-Reply
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_EVENT_REPLY"
--+ H-CL-ID = 2034
SEQUENCE { eventType EventTypeId

--+ ATTR-NAME = event-Type
--+ H-ATTR-NAME = "MP_EVENT_TYPE"
--+ H-ATTR-ID = 2041
--+ ATTR-SYNTAX = 127 "Event-Type-Id"
--+ VALUE-NUMBER = 1

,
eventReplyInfo [8] ANY DEFINED BY eventType

--% ANY_TABLE_REF (NotificationReplyTableMod.NotificationReplyTypes) %-- OPTIONAL
--+ ATTR-NAME = event-Reply-Info
--+ H-ATTR-NAME = "MP_EVENT_REPLY_INFO"
--+ H-ATTR-ID = 2039
--+ ATTR-SYNTAX = 8
--+ VALUE-NUMBER = 0

}

EventReportArgument::= --+ SUPER-CLASS = Event-Report-Argument
--+ CL-NAME = CMIS-Event-Report-Argument
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_CMIS_EVENT_REPORT_ARGUMENT"
--+ H-CL-ID = 2019
SEQUENCE { managedObjectClass ObjectClass

--+ ATTR-NAME = managed-Object-Class
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"
--+ H-ATTR-ID = 2057
--+ ATTR-SYNTAX = 127 "Object-Class"
--+ VALUE-NUMBER = 1

,
managedObjectInstance ObjectInstance

--+ ATTR-NAME = managed-Object-Instance
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"
--+ H-ATTR-ID = 2058
--+ ATTR-SYNTAX = 127 "Object-Instance"
--+ VALUE-NUMBER = 1

,
eventTime [5] IMPLICIT GeneralizedTime OPTIONAL

--+ ATTR-NAME = event-Time
--+ H-ATTR-NAME = "MP_EVENT_TIME"
--+ H-ATTR-ID = 2040
--+ ATTR-SYNTAX = 24
-- Time
--+ VALUE-NUMBER = 0

,
eventType EventTypeId

--+ ATTR-NAME = event-Type
--+ H-ATTR-NAME = "MP_EVENT_TYPE"
--+ H-ATTR-ID = 2041
--+ ATTR-SYNTAX = 127 "Event-Type-Id"
--+ VALUE-NUMBER = 1

,
eventInfo [8] ANY DEFINED BY eventType

--% ANY_TABLE_REF (NotificationInfoTableMod.NotificationTypes) %-- OPTIONAL
--+ ATTR-NAME = event-Info
--+ H-ATTR-NAME = "MP_EVENT_INFO"
--+ H-ATTR-ID = 2037

ASN.1

Appendix B. ASN.1 Specification of the Basic CMIP Strings 253

--+ ATTR-SYNTAX = 8
--+ VALUE-NUMBER = 0

}

EventReportResult::= --+ SUPER-CLASS = Event-Report-Result
--+ CL-NAME = CMIS-Event-Report-Result
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_CMIS_EVENT_REPORT_RESULT"
--+ H-CL-ID = 2020
SEQUENCE { managedObjectClass ObjectClass OPTIONAL

--+ ATTR-NAME = managed-Object-Class
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"
--+ H-ATTR-ID = 2057
--+ ATTR-SYNTAX = 127 "Object-Class"
--+ VALUE-NUMBER = 0

,
managedObjectInstance ObjectInstance OPTIONAL

--+ ATTR-NAME = managed-Object-Instance
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"
--+ H-ATTR-ID = 2058
--+ ATTR-SYNTAX = 127 "Object-Instance"
--+ VALUE-NUMBER = 0

,
currentTime [5] IMPLICIT GeneralizedTime OPTIONAL

--+ ATTR-NAME = current-Time
--+ H-ATTR-NAME = "MP_CURRENT_TIME"
--+ H-ATTR-ID = 2027
--+ ATTR-SYNTAX = 24
--+ VALUE-NUMBER = 0

,
eventReply EventReply OPTIONAL

--+ ATTR-NAME = event-Reply
--+ H-ATTR-NAME = "MP_EVENT_REPLY"
--+ H-ATTR-ID = 2038
--+ ATTR-SYNTAX = 127 "Event-Reply"
--+ VALUE-NUMBER = 0

}

-- This has been adapted to align with the comments below.
-- The CHOICE has been eliminated to simplify processing
-- and the use of the API.
EventTypeId ::= [6] IMPLICIT OBJECT IDENTIFIER
-- This [Recommendation | part of ISO/IEC 9596] does not allocate any values for
-- localForm.
-- Where this alternative is used, the permissible values for the integers
-- and their meanings shall be defined as part of the application context
-- in which they are used.

FilterItem::= --+ CL-NAME = Filter-Item
--+ CL-TYPE = 0
--+ H-CL-NAME = "OMP_O_MP_C_FILTER_ITEM"
--+ H-CL-ID = 2036
CHOICE { equality [0] IMPLICIT Attribute

--+ ATTR-NAME = equality
--+ H-ATTR-NAME = "MP_EQUALITY"
--+ H-ATTR-ID = 2032
--+ ATTR-SYNTAX = 127 "Attribute"
--+ VALUE-NUMBER = 0

,
substrings [1] IMPLICIT SEQUENCE OF Substrings

--+ ATTR-NAME = substrings
--+ H-ATTR-NAME = "MP_SUBSTRINGS"
--+ H-ATTR-ID = 2077
--+ ATTR-SYNTAX = 127 "Substrings"
--+ VALUE-NUMBER = 2

,
greaterOrEqual [2] IMPLICIT Attribute -- asserted value >= attribute value

--+ ATTR-NAME = greater-Or-Equal
--+ H-ATTR-NAME = "MP_GREATER_OR_EQUAL"
--+ H-ATTR-ID = 2050
--+ ATTR-SYNTAX = 127 "Attribute"
--+ VALUE-NUMBER = 0

,
lessOrEqual [3] IMPLICIT Attribute -- asserted value <= attribute value

--+ ATTR-NAME = less-Or-Equal
--+ H-ATTR-NAME = "MP_LESS_OR_EQUAL"
--+ H-ATTR-ID = 2054
--+ ATTR-SYNTAX = 127 "Attribute"
--+ VALUE-NUMBER = 0

,
present [4] AttributeId

--+ ATTR-NAME = present
--+ H-ATTR-NAME = "MP_PRESENT"
--+ H-ATTR-ID = 2066
--+ ATTR-SYNTAX = 127 "Attribute-Id"
--+ VALUE-NUMBER = 0

,

ASN.1

254 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

subsetOf [5] IMPLICIT Attribute -- asserted value is a subset of attribute value
--+ ATTR-NAME = subset-Of
--+ H-ATTR-NAME = "MP_SUBSET_OF"
--+ H-ATTR-ID = 2076
--+ ATTR-SYNTAX = 127 "Attribute"
--+ VALUE-NUMBER = 0

,
supersetOf [6] IMPLICIT Attribute -- asserted value is a superset of attribute value

--+ ATTR-NAME = superset-Of
--+ H-ATTR-NAME = "MP_SUPERSET_OF"
--+ H-ATTR-ID = 2079
--+ ATTR-SYNTAX = 127 "Attribute"
--+ VALUE-NUMBER = 0

,
nonNullSetIntersection [7] IMPLICIT Attribute

--+ ATTR-NAME = non-Null-Set-Intersection
--+ H-ATTR-NAME = "MP_NON_NULL_SET_INTERSECTION"
--+ H-ATTR-ID = 2062
--+ ATTR-SYNTAX = 127 "Attribute"
--+ VALUE-NUMBER = 0

}

Substring ::= --+ CL-NAME = Substring
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_SUBSTRING"
--+ H-CL-ID = 2053
SEQUENCE { attributeId AttributeId

--+ ATTR-NAME = attribute-Id
--+ H-ATTR-NAME = "MP_ATTRIBUTE_ID"
--+ H-ATTR-ID = 2017
--+ ATTR-SYNTAX = 127 "Attribute-Id"
--+ VALUE-NUMBER = 1

,
string ANY DEFINED BY attributeId

--% ANY_TABLE_REF(AttributeTableMod.AttributeTypes)
--+ ATTR-NAME = string
--+ H-ATTR-NAME = "MP_STRING"
--+ H-ATTR-ID = 1039
--+ ATTR-SYNTAX = 27
--+ VALUE-NUMBER = 3

}

Substrings ::= --+ CL-NAME = Substrings
--+ CL-TYPE = 4
--+ H-CL-NAME = "OMP_O_MP_C_SUBSTRINGS"
--+ H-CL-ID = 2054
CHOICE { initialString [0] IMPLICIT Substring

--+ ATTR-NAME = initial-String
--+ H-ATTR-NAME = "MP_INITIAL_STRING"
--+ H-ATTR-ID = 2052
--+ ATTR-SYNTAX = 127 "Substring"
--+ VALUE-NUMBER = 0

,
anyString [1] IMPLICIT Substring

--+ ATTR-NAME = any-Substring
--+ H-ATTR-NAME = "MP_ANY_STRING"
--+ H-ATTR-ID = 2013
--+ ATTR-SYNTAX = 127 "Substring"
--+ VALUE-NUMBER = 0

,
finalString [2] IMPLICIT Substring

--+ ATTR-NAME = final-String
--+ H-ATTR-NAME = "MP_FINAL_STRING"
--+ H-ATTR-ID = 2044
--+ ATTR-SYNTAX = 127 "Substring"
--+ VALUE-NUMBER = 0

}

GetArgument::= --+ SUPER-CLASS = Get-Argument
--+ CL-NAME = CMIS-Get-Argument
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_CMIS_GET_ARGUMENT"
--+ H-CL-ID = 2022
SEQUENCE { baseManagedObjectClass ObjectClass

--+ ATTR-NAME = base-Managed-Object-Class
--+ H-ATTR-NAME = "MP_BASE_MANAGED_OBJECT_CLASS"
--+ H-ATTR-ID = 2023
--+ ATTR-SYNTAX = 127 "Object-Class"
--+ VALUE-NUMBER = 1

,
baseManagedObjectInstance ObjectInstance

--+ ATTR-NAME = base-Managed-Object-Instance
--+ H-ATTR-NAME = "MP_BASE_MANAGED_OBJECT_INSTANCE"
--+ H-ATTR-ID = 2024
--+ ATTR-SYNTAX = 127 "Object-Instance"
--+ VALUE-NUMBER = 1

ASN.1

Appendix B. ASN.1 Specification of the Basic CMIP Strings 255

,
accessControl [5] AccessControl OPTIONAL

--+ ATTR-NAME = access-Control
--+ H-ATTR-NAME = "MP_ACCESS_CONTROL"
--+ H-ATTR-ID = 1001
--+ ATTR-SYNTAX = 127 "Access-Control"
--+ VALUE-NUMBER = 0

,
synchronization [6] IMPLICIT CMISSync DEFAULT bestEffort

--+ ATTR-NAME = synchronization
--+ H-ATTR-NAME = "MP_SYNCHRONIZATION"
--+ H-ATTR-ID = 2080
--+ ATTR-SYNTAX = 10 "CMIS-Sync"
--+ VALUE-NUMBER = 0

,
scope [7] Scope DEFAULT basicScope : baseObject

--+ ATTR-NAME = scope
--+ H-ATTR-NAME = "MP_SCOPE"
--+ H-ATTR-ID = 2070
--+ ATTR-SYNTAX = 127 "Scope"
--+ VALUE-NUMBER = 0

,
filter CMISFilter DEFAULT and:{}

--+ ATTR-NAME = filter
--+ H-ATTR-NAME = "MP_FILTER"
--+ H-ATTR-ID = 2043
--+ ATTR-SYNTAX = 127 "CMIS-Filter"
--+ VALUE-NUMBER = 0

,
attributeIdList [12] IMPLICIT SET OF AttributeId OPTIONAL

--+ ATTR-NAME = attribute-Id-List
--+ H-ATTR-NAME = "MP_ATTRIBUTE_ID_LIST"
--+ H-ATTR-ID = 2020
--+ ATTR-SYNTAX = 127 "Attribute-Id-List"
--+ VALUE-NUMBER = 0
--+ CL-NAME = Attribute-Id-List
--+ CL-TYPE = 2
--+ H-CL-NAME = "OMP_O_MP_C_ATTRIBUTE_ID_LIST"
--+ H-CL-ID = 2010
--+ ATTR-NAME = attribute-Id
--+ H-ATTR-NAME = "MP_ATTRIBUTE_ID"
--+ H-ATTR-ID = 2017
--+ ATTR-SYNTAX = 127 "Attribute-Id"
--+ VALUE-NUMBER = 2

}

GetInfoStatus::= --+ CL-NAME = Get-Info-Status
--+ CL-TYPE = 0
--+ H-CL-NAME = "OMP_O_MP_C_GET_INFO_STATUS"
--+ H-CL-ID = 2037
CHOICE { attributeIdError [0] IMPLICIT AttributeIdError

--+ ATTR-NAME = attribute-Id-Error
--+ H-ATTR-NAME = "MP_ATTRIBUTE_ID_ERROR"
--+ H-ATTR-ID = 2019
--+ ATTR-SYNTAX = 127 "Attribute-Id-Error"
--+ VALUE-NUMBER = 0

,
attribute [1] IMPLICIT Attribute

--+ ATTR-NAME = attribute
--+ H-ATTR-NAME = "MP_ATTRIBUTE"
--+ H-ATTR-ID = 2015
--+ ATTR-SYNTAX = 127 "Attribute"
--+ VALUE-NUMBER = 0

}

GetListError::= --+ SUPER-CLASS = Get-List-Error
--+ CL-NAME = CMIS-Get-List-Error
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_CMIS_GET_LIST_ERROR"
--+ H-CL-ID = 2023
SEQUENCE { managedObjectClass ObjectClass OPTIONAL

--+ ATTR-NAME = managed-Object-Class
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"
--+ H-ATTR-ID = 2057
--+ ATTR-SYNTAX = 127 "Object-Class"
--+ VALUE-NUMBER = 0

,
managedObjectInstance ObjectInstance OPTIONAL

--+ ATTR-NAME = managed-Object-Instance
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"
--+ H-ATTR-ID = 2058
--+ ATTR-SYNTAX = 127 "Object-Instance"
--+ VALUE-NUMBER = 0

,
currentTime [5] IMPLICIT GeneralizedTime OPTIONAL

--+ ATTR-NAME = current-Time
--+ H-ATTR-NAME = "MP_CURRENT_TIME"

ASN.1

256 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

--+ H-ATTR-ID = 2027
--+ ATTR-SYNTAX = 24
--+ VALUE-NUMBER = 0

,
getInfoList [6] IMPLICIT SET OF GetInfoStatus

--+ ATTR-NAME = get-Info-List
--+ H-ATTR-NAME = "MP_GET_INFO_LIST"
--+ H-ATTR-ID = 2045
--+ ATTR-SYNTAX = 127 "Get-Info-Status"
--+ VALUE-NUMBER = 3

}

GetResult::= --+ SUPER-CLASS = Get-Result
--+ CL-NAME = CMIS-Get-Result
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_CMIS_GET_RESULT"
--+ H-CL-ID = 2024
SEQUENCE { managedObjectClass ObjectClass OPTIONAL

--+ ATTR-NAME = managed-Object-Class
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"
--+ H-ATTR-ID = 2057
--+ ATTR-SYNTAX = 127 "Object-Class"
--+ VALUE-NUMBER = 0

,
managedObjectInstance ObjectInstance OPTIONAL

--+ ATTR-NAME = managed-Object-Instance
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"
--+ H-ATTR-ID = 2058
--+ ATTR-SYNTAX = 127 "Object-Instance"
--+ VALUE-NUMBER = 0

,
currentTime [5] IMPLICIT GeneralizedTime OPTIONAL

--+ ATTR-NAME = current-Time
--+ H-ATTR-NAME = "MP_CURRENT_TIME"
--+ H-ATTR-ID = 2027
--+ ATTR-SYNTAX = 24
--+ VALUE-NUMBER = 0

,
attributeList [6] IMPLICIT SET OF Attribute OPTIONAL

--+ ATTR-NAME = attribute-List
--+ H-ATTR-NAME = "MP_ATTRIBUTE_LIST"
--+ H-ATTR-ID = 2021
--+ ATTR-SYNTAX = 127 "Attribute"
--+ VALUE-NUMBER = 2

}

InvalidArgumentValue::= --+ CL-NAME = Invalid-Argument-Value
--+ CL-TYPE = 0
--+ H-CL-NAME = "OMP_O_MP_C_INVALID_ARGUMENT_VALUE"
--+ H-CL-ID = 2038
CHOICE { actionValue [0] IMPLICIT ActionInfo

--+ ATTR-NAME = action-Value
--+ H-ATTR-NAME = "MP_ACTION_VALUE"
--+ H-ATTR-ID = 2011
--+ ATTR-SYNTAX = 127 "Action-Info"
--+ VALUE-NUMBER = 0

,
eventValue [1] IMPLICIT SEQUENCE { eventType EventTypeId,

eventInfo [8] ANY DEFINED BY eventType
--% ANY_TABLE_REF

(NotificationInfoTableMod.NotificationReplyTypes) %-- OPTIONAL }
--+ ATTR-NAME = event-Value
--+ H-ATTR-NAME = "MP_EVENT_VALUE"
--+ H-ATTR-ID = 2042
--+ ATTR-SYNTAX = 127 "Event-Reply"
--+ VALUE-NUMBER = 0

}

LinkedReplyArgument::= --+ SUPER-CLASS = Linked-Reply-Argument
--+ CL-NAME = CMIS-Linked-Reply-Argument
--+ CL-TYPE = 0
--+ H-CL-NAME = "OMP_O_MP_C_CMIS_LINKED_REPLY_ARGUMENT"
--+ H-CL-ID = 2025
CHOICE { getResult [0] IMPLICIT GetResult

--+ ATTR-NAME = get-Result
--+ H-ATTR-NAME = "MP_GET_RESULT"
--+ H-ATTR-ID = 2048
--+ ATTR-SYNTAX = 127 "CMIS-Get-Result"
--+ VALUE-NUMBER = 0

,
getListError [1] IMPLICIT GetListError

--+ ATTR-NAME = get-List-Error
--+ H-ATTR-NAME = "MP_GET_LIST_ERROR"
--+ H-ATTR-ID = 2047
--+ ATTR-SYNTAX = 127 "CMIS-Get-List-Error"

ASN.1

Appendix B. ASN.1 Specification of the Basic CMIP Strings 257

--+ VALUE-NUMBER = 0
,
setResult [2] IMPLICIT SetResult

--+ ATTR-NAME = set-Result
--+ H-ATTR-NAME = "MP_SET_RESULT"
--+ H-ATTR-ID = 2074
--+ ATTR-SYNTAX = 127 "CMIS-Set-Result"
--+ VALUE-NUMBER = 0

,
setListError [3] IMPLICIT SetListError

--+ ATTR-NAME = set-List-Error
--+ H-ATTR-NAME = "MP_SET_LIST_ERROR"
--+ H-ATTR-ID = 2072
--+ ATTR-SYNTAX = 127 "CMIS-Set-List-Error"
--+ VALUE-NUMBER = 0

,
actionResult [4] IMPLICIT ActionResult

--+ ATTR-NAME = action-Result
--+ H-ATTR-NAME = "MP_ACTION_RESULT"
--+ H-ATTR-ID = 2009
--+ ATTR-SYNTAX = 127 "CMIS-Action-Result"
--+ VALUE-NUMBER = 0

,
processingFailure [5] IMPLICIT ProcessingFailure

--+ ATTR-NAME = processing-Failure
--+ H-ATTR-NAME = "MP_PROCESSING_FAILURE"
--+ H-ATTR-ID = 2067
--+ ATTR-SYNTAX = 127 "Processing-Failure"
--+ VALUE-NUMBER = 0

,
deleteResult [6] IMPLICIT DeleteResult

--+ ATTR-NAME = delete-Result
--+ H-ATTR-NAME = "MP_DELETE_RESULT"
--+ H-ATTR-ID = 2030
--+ ATTR-SYNTAX = 127 "CMIS-Delete-Result"
--+ VALUE-NUMBER = 0

,
actionError [7] IMPLICIT ActionError

--+ ATTR-NAME = action-Error
--+ H-ATTR-NAME = "MP_ACTION_ERROR"
--+ H-ATTR-ID = 2002
--+ ATTR-SYNTAX = 127 "Action-Error"
--+ VALUE-NUMBER = 0

,
deleteError [8] IMPLICIT DeleteError

--+ ATTR-NAME = delete-Error
--+ H-ATTR-NAME = "MP_DELETE_ERROR"
--+ H-ATTR-ID = 2028
--+ ATTR-SYNTAX = 127 "Delete-Error"
--+ VALUE-NUMBER = 0

}

ModifyOperator::= INTEGER --+ VL-NAME = Modify-Operator
{ replace (0)
--+ ELEM-NAME = replace
--+ H-ELEM-NAME = "MP_T_REPLACE"
--+ H-ELEM-ID = 0
,
addValues (1)
--+ ELEM-NAME = add-Values
--+ H-ELEM-NAME = "MP_T_ADD_VALUES"
--+ H-ELEM-ID = 1
,
removeValues (2)
--+ ELEM-NAME = remove-Values
--+ H-ELEM-NAME = "MP_T_REMOVE_VALUES"
--+ H-ELEM-ID = 2
,
setToDefault (3)
--+ ELEM-NAME = set-To-Default
--+ H-ELEM-NAME = "MP_T_SET_TO_DEFAULT"
--+ H-ELEM-ID = 3
}

NoSuchAction::= --+ CL-NAME = No-Such-Action
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_NO_SUCH_ACTION"
--+ H-CL-ID = 2042
SEQUENCE { managedObjectClass ObjectClass

--+ ATTR-NAME = managed-Object-Class
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"
--+ H-ATTR-ID = 2057
--+ ATTR-SYNTAX = 127 "Object-Class"
--+ VALUE-NUMBER = 1

,
actionType ActionTypeId

--+ ATTR-NAME = action-Type

ASN.1

258 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

--+ H-ATTR-NAME = "MP_ACTION_TYPE"
--+ H-ATTR-ID = 2010
--+ ATTR-SYNTAX = 127 "Action-Type-Id"
--+ VALUE-NUMBER = 1

}

NoSuchArgument::= --+ CL-NAME = No-Such-Argument
--+ CL-TYPE = 0
--+ H-CL-NAME = "OMP_O_MP_C_NO_SUCH_ARGUMENT"
--+ H-CL-ID = 2044
CHOICE { actionId [0] IMPLICIT SEQUENCE { managedObjectClass ObjectClass OPTIONAL

--+ ATTR-NAME = managed-Object-Class
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"
--+ H-ATTR-ID = 2057
--+ ATTR-SYNTAX = 127 "Object-Class"
--+ VALUE-NUMBER = 0

,
actionType ActionTypeId

--+ ATTR-NAME = action-Type
--+ H-ATTR-NAME = "MP_ACTION_TYPE"
--+ H-ATTR-ID = 2010
--+ ATTR-SYNTAX = 127 "Action-Type-Id"
--+ VALUE-NUMBER = 1

}
--+ ATTR-NAME = action-Id
--+ H-ATTR-NAME = "MP_ACTION_ID"
--+ H-ATTR-ID = 2004
--+ ATTR-SYNTAX = 127 "No-Such-Action-Id"
--+ VALUE-NUMBER = 0
--+ CL-NAME = No-Such-Action-Id
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_NO_SUCH_ACTION_ID"
--+ H-CL-ID = 2043

,
eventId [1] IMPLICIT SEQUENCE { managedObjectClass ObjectClass OPTIONAL

--+ ATTR-NAME = managed-Object-Class
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"
--+ H-ATTR-ID = 2057
--+ ATTR-SYNTAX = 127 "Object-Class"
--+ VALUE-NUMBER = 0

,
eventType EventTypeId

--+ ATTR-NAME = event-Type
--+ H-ATTR-NAME = "MP_EVENT_TYPE"
--+ H-ATTR-ID = 2041
--+ ATTR-SYNTAX = 127 "Event-Type-Id"
--+ VALUE-NUMBER = 1

}
--+ ATTR-NAME = event-Id
--+ H-ATTR-NAME = "MP_EVENT_ID"
--+ H-ATTR-ID = 2036
--+ ATTR-SYNTAX = 127 "No-Such-Event-Id"
--+ VALUE-NUMBER = 0
--+ CL-NAME = No-Such-Event-Id
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_NO_SUCH_EVENT_ID"
--+ H-CL-ID = 2045

}

NoSuchEventType::= --+ CL-NAME = No-Such-Event-Type
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_NO_SUCH_EVENT_TYPE"
--+ H-CL-ID = 2046
SEQUENCE { managedObjectClass ObjectClass

--+ ATTR-NAME = managed-Object-Class
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"
--+ H-ATTR-ID = 2057
--+ ATTR-SYNTAX = 127 "Object-Class"
--+ VALUE-NUMBER = 1

,
eventType EventTypeId

--+ ATTR-NAME = event-Type
--+ H-ATTR-NAME = "MP_EVENT_TYPE"
--+ H-ATTR-ID = 2041
--+ ATTR-SYNTAX = 127 "Event-Type-Id"
--+ VALUE-NUMBER = 1

}

-- ADDED to allow support for allomorphic Notifications
-- The first production is used by the Infrastructure to parse the
-- notification as a complete unit. This gets around the resolution
-- of the argument to EventReportArgument in the ROIV production.
-- The second production is used in the place of EventReportArgument
-- when applications wish to emit notifications
Notification ::= [1] IMPLICIT SEQUENCE

{invokeID InvokeIDType,

ASN.1

Appendix B. ASN.1 Specification of the Basic CMIP Strings 259

linked-ID [0] IMPLICIT InvokeIDType OPTIONAL,
operation-value Operation,
argument NotificationArg
}

NotificationArg ::= SEQUENCE
{
allomorphs SET OF ObjectClass OPTIONAL,
managedObjectClass ObjectClass,
managedObjectInstance ObjectInstance,
eventTime [5] IMPLICIT GeneralizedTime OPTIONAL,
eventType EventTypeId,
eventInfo [8] ANY DEFINED BY eventType
--% ANY_TABLE_REF (NotificationInfoTableMod.NotificationTypes) %-- OPTIONAL
}

-- End of Notification addition

-- This is actually a CHOICE of OBJECT IDENTIFIER or INTEGER
-- but we only support OBJECT IDENTIFIER, so the syntax was simplified
-- to shorten the strings at the API
ObjectClass ::= [0] IMPLICIT OBJECT IDENTIFIER
-- This [Recommendation | part of ISO/IEC 9596] does not allocate any values for
-- localForm.
-- Where this alternative is used, the permissible values for the integers
-- and their meanings shall be defined as part of the application context
-- in which they are used.

ObjectInstance::= --+ CL-NAME = Object-Instance
--+ CL-TYPE = 0
--+ H-CL-NAME = "OMP_O_MP_C_OBJECT_INSTANCE"
--+ H-CL-ID = 2048
CHOICE { distinguishedName [2] IMPLICIT DistinguishedName

--+ ATTR-NAME = distinguished-Name
--+ H-ATTR-NAME = "MP_DISTINGUISHED_NAME"
--+ H-ATTR-ID = 2031
--+ ATTR-SYNTAX = 127 "DS-DN"
--+ VALUE-NUMBER = 0

,
nonSpecificForm [3] IMPLICIT OCTET STRING

--+ ATTR-NAME = non-Specific-Form
--+ H-ATTR-NAME = "MP_NON_SPECIFIC_FORM"
--+ H-ATTR-ID = 2063
--+ ATTR-SYNTAX = 4
--+ VALUE-NUMBER = 0

,
localDistinguishedName [4] IMPLICIT RDNSequence

--+ ATTR-NAME = local-DN
--+ H-ATTR-NAME = "MP_LOCAL_DN"
--+ H-ATTR-ID = 2055
--+ ATTR-SYNTAX = 127 "DS-DN"
--+ VALUE-NUMBER = 0

}

-- localDistinguishedName is that portion of the distinguished name that is
-- necessary to unambiguosly identify the managed object within the context
-- of communication between the open systems

ProcessingFailure::= --+ CL-NAME = Processing-Failure
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_PROCESSING_FAILURE"
--+ H-CL-ID = 2049
SEQUENCE { managedObjectClass ObjectClass

--+ ATTR-NAME = managed-Object-Class
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"
--+ H-ATTR-ID = 2057
--+ ATTR-SYNTAX = 127 "Object-Class"
--+ VALUE-NUMBER = 1

,
managedObjectInstance ObjectInstance OPTIONAL

--+ ATTR-NAME = managed-Object-Instance
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"
--+ H-ATTR-ID = 2058
--+ ATTR-SYNTAX = 127 "Object-Instance"
--+ VALUE-NUMBER = 0

,
specificErrorInfo [5] SpecificErrorInfo

--+ ATTR-NAME = specific-Error-Info
--+ H-ATTR-NAME = "MP_SPECIFIC_ERROR_INFO"
--+ H-ATTR-ID = 2075
--+ ATTR-SYNTAX = 127 "Specific-Error-Info"
--+ VALUE-NUMBER = 1

}

Scope::= --+ CL-NAME = Scope
--+ CL-TYPE = 0
--+ H-CL-NAME = "OMP_O_MP_C_SCOPE"

ASN.1

260 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

--+ H-CL-ID = 2050
CHOICE { basicScope INTEGER --+ VL-NAME = Scope

{ baseObject (0)
--+ ELEM-NAME = base-Object
--+ H-ELEM-NAME = "MP_T_BASE_OBJECT"
--+ H-ELEM-ID = 0
,
firstLevelOnly (1)
--+ ELEM-NAME = first-Level-Only
--+ H-ELEM-NAME = "MP_T_FIRST_LEVEL_ONLY"
--+ H-ELEM-ID = 1
,
wholeSubtree (2)
--+ ELEM-NAME = whole-Subtree
--+ H-ELEM-NAME = "MP_T_WHOLE_SUBTREE"
--+ H-ELEM-ID = 2
}

--+ ATTR-NAME = named-Numbers
--+ H-ATTR-NAME = "MP_NAMED_NUMBERS"
--+ H-ATTR-ID = 2061
--+ ATTR-SYNTAX = 10 "Scope"
--+ VALUE-NUMBER = 0

,
individualLevels [1] IMPLICIT INTEGER

-- POSITIVE integer that indicates the level to be selected
--+ ATTR-NAME = individual-Levels
--+ H-ATTR-NAME = "MP_INDIVIDUAL_LEVELS"
--+ H-ATTR-ID = 2051
--+ ATTR-SYNTAX = 2
--+ VALUE-NUMBER = 0

,
baseToNthLevel [2] IMPLICIT INTEGER

-- POSITIVE integer that indicates the range of levels (0-N) is to be selected
--+ ATTR-NAME = base-To-Nth-Level
--+ H-ATTR-NAME = "MP_BASE_TO_NTH_LEVEL"
--+ H-ATTR-ID = 2025
--+ ATTR-SYNTAX = 2
--+ VALUE-NUMBER = 0

}

-- with individualLevels and baseToNthLevel, a value of 0 has the same semantics
-- as baseObject
-- with individualLevels, a value of 1 has the same semantics as firstLevelOnly

SetArgument::= --+ SUPER-CLASS = Set-Argument
--+ CL-NAME = CMIS-Set-Argument
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_CMIS_SET_ARGUMENT"
--+ H-CL-ID = 2027
SEQUENCE { baseManagedObjectClass ObjectClass

--+ ATTR-NAME = base-Managed-Object-Class
--+ H-ATTR-NAME = "MP_BASE_MANAGED_OBJECT_CLASS"
--+ H-ATTR-ID = 2023
--+ ATTR-SYNTAX = 127 "Object-Class"
--+ VALUE-NUMBER = 1

,
baseManagedObjectInstance ObjectInstance

--+ ATTR-NAME = base-Managed-Object-Instance
--+ H-ATTR-NAME = "MP_BASE_MANAGED_OBJECT_INSTANCE"
--+ H-ATTR-ID = 2024
--+ ATTR-SYNTAX = 127 "Object-Instance"
--+ VALUE-NUMBER = 1

,
accessControl [5] AccessControl OPTIONAL

--+ ATTR-NAME = access-Control
--+ H-ATTR-NAME = "MP_ACCESS_CONTROL"
--+ H-ATTR-ID = 1001
--+ ATTR-SYNTAX = 127 "Access-Control"
--+ VALUE-NUMBER = 0

,
synchronization [6] IMPLICIT CMISSync DEFAULT bestEffort

--+ ATTR-NAME = synchronization
--+ H-ATTR-NAME = "MP_SYNCHRONIZATION"
--+ H-ATTR-ID = 2080
--+ ATTR-SYNTAX = 10 "CMIS-Sync"
--+ VALUE-NUMBER = 0

,
scope [7] Scope DEFAULT basicScope : baseObject

--+ ATTR-NAME = scope
--+ H-ATTR-NAME = "MP_SCOPE"
--+ H-ATTR-ID = 2070
--+ ATTR-SYNTAX = 127 "Scope"
--+ VALUE-NUMBER = 0

,
filter CMISFilter DEFAULT and:{}

--+ ATTR-NAME = filter
--+ H-ATTR-NAME = "MP_FILTER"

ASN.1

Appendix B. ASN.1 Specification of the Basic CMIP Strings 261

--+ H-ATTR-ID = 2043
--+ ATTR-SYNTAX = 127 "CMIS-Filter"
--+ VALUE-NUMBER = 0

,
modificationList [12] IMPLICIT SET OF

--+ CL-NAME = Modification
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_MODIFICATION"
--+ H-CL-ID = 2040
SEQUENCE { modifyOperator [2]

IMPLICIT ModifyOperator DEFAULT replace
--+ ATTR-NAME = modify-Operator
--+ H-ATTR-NAME = "MP_MODIFY_OPERATOR"
--+ H-ATTR-ID = 2060
--+ ATTR-SYNTAX = 10 "Modify-Operator"
--+ VALUE-NUMBER = 0

,
attributeId AttributeId

--+ ATTR-NAME = attribute-Id
--+ H-ATTR-NAME = "MP_ATTRIBUTE_ID"
--+ H-ATTR-ID = 2017
--+ ATTR-SYNTAX = 127 "Attribute-Id"
--+ VALUE-NUMBER = 1

,
attributeValue ANY DEFINED BY attributeId

--% ANY_TABLE_REF(AttributeTableMod.AttributeTypes)
%-- OPTIONAL -- absent for setToDefault

--+ ATTR-NAME = attribute-Value
--+ H-ATTR-NAME = "MP_ATTRIBUTE_VALUE"
--+ H-ATTR-ID = 2022
--+ ATTR-SYNTAX = 8
--+ VALUE-NUMBER = 0

}
--+ ATTR-NAME = modification-List
--+ H-ATTR-NAME = "MP_MODIFICATION_LIST"
--+ H-ATTR-ID = 2059
--+ ATTR-SYNTAX = 127 "Modification"
--+ VALUE-NUMBER = 2

}

SetInfoStatus::= --+ CL-NAME = Set-Info-Status
--+ CL-TYPE = 0
--+ H-CL-NAME = "OMP_O_MP_C_SET_INFO_STATUS"
--+ H-CL-ID = 2051
CHOICE { attributeError [0] IMPLICIT AttributeError

--+ ATTR-NAME = attribute-Error
--+ H-ATTR-NAME = "MP_ATTRIBUTE_ERROR"
--+ H-ATTR-ID = 2016
--+ ATTR-SYNTAX = 127 "Attribute-Error"
--+ VALUE-NUMBER = 0

,
attribute [1] IMPLICIT Attribute

--+ ATTR-NAME = attribute
--+ H-ATTR-NAME = "MP_ATTRIBUTE"
--+ H-ATTR-ID = 2015
--+ ATTR-SYNTAX = 127 "Attribute"
--+ VALUE-NUMBER = 0

}

SetListError::= --+ SUPER-CLASS = Set-List-Error
--+ CL-NAME = CMIS-Set-List-Error
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_CMIS_SET_LIST_ERROR"
--+ H-CL-ID = 2028
SEQUENCE { managedObjectClass ObjectClass OPTIONAL

--+ ATTR-NAME = managed-Object-Class
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"
--+ H-ATTR-ID = 2057
--+ ATTR-SYNTAX = 127 "Object-Class"
--+ VALUE-NUMBER = 0

,
managedObjectInstance ObjectInstance OPTIONAL

--+ ATTR-NAME = managed-Object-Instance
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"
--+ H-ATTR-ID = 2058
--+ ATTR-SYNTAX = 127 "Object-Instance"
--+ VALUE-NUMBER = 0

,
currentTime [5] IMPLICIT GeneralizedTime OPTIONAL

--+ ATTR-NAME = current-Time
--+ H-ATTR-NAME = "MP_CURRENT_TIME"
--+ H-ATTR-ID = 2027
--+ ATTR-SYNTAX = 24
--+ VALUE-NUMBER = 0

,
setInfoList [6] IMPLICIT SET OF SetInfoStatus

ASN.1

262 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

--+ ATTR-NAME = set-Info-List
--+ H-ATTR-NAME = "MP_SET_INFO_LIST"
--+ H-ATTR-ID = 2071
--+ ATTR-SYNTAX = 127 "Set-Info-Status"
--+ VALUE-NUMBER = 3

}

SetResult::= --+ SUPER-CLASS = Set-Result
--+ CL-NAME = CMIS-Set-Result
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_CMIS_SET_RESULT"
--+ H-CL-ID = 2029

SEQUENCE { managedObjectClass ObjectClass OPTIONAL
--+ ATTR-NAME = managed-Object-Class
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_CLASS"
--+ H-ATTR-ID = 2057
--+ ATTR-SYNTAX = 127 "Object-Class"
--+ VALUE-NUMBER = 0

,
managedObjectInstance ObjectInstance OPTIONAL

--+ ATTR-NAME = managed-Object-Instance
--+ H-ATTR-NAME = "MP_MANAGED_OBJECT_INSTANCE"
--+ H-ATTR-ID = 2058
--+ ATTR-SYNTAX = 127 "Object-Instance"
--+ VALUE-NUMBER = 0

,
currentTime [5] IMPLICIT GeneralizedTime OPTIONAL

--+ ATTR-NAME = current-Time
--+ H-ATTR-NAME = "MP_CURRENT_TIME"
--+ H-ATTR-ID = 2027
--+ ATTR-SYNTAX = 24
--+ VALUE-NUMBER = 0

,
attributeList [6] IMPLICIT SET OF Attribute OPTIONAL

--+ ATTR-NAME = attribute-List
--+ H-ATTR-NAME = "MP_ATTRIBUTE_LIST"
--+ H-ATTR-ID = 2021
--+ ATTR-SYNTAX = 127 "Attribute"
--+ VALUE-NUMBER = 2

}

SpecificErrorInfo::= --+ CL-NAME = Specific-Error-Info
--+ CL-TYPE = 3
--+ H-CL-NAME = "OMP_O_MP_C_SPECIFC_ERROR_INFO"
--+ H-CL-ID = 2052
SEQUENCE { errorId OBJECT IDENTIFIER

--+ ATTR-NAME = error-Id
--+ H-ATTR-NAME = "MP_ERROR_ID"
--+ H-ATTR-ID = 2033
--+ ATTR-SYNTAX = 6
--+ VALUE-NUMBER = 1

,
errorInfo ANY DEFINED BY errorId --% ANY_TABLE_REF(ParameterTableMod.ParameterTypes)

--+ ATTR-NAME = error-Info
--+ H-ATTR-NAME = "MP_ERROR_INFO"
--+ H-ATTR-ID = 2034
--+ ATTR-SYNTAX = 8
--+ VALUE-NUMBER = 1

}

END -- CMIP definitions

ASN.1

Appendix B. ASN.1 Specification of the Basic CMIP Strings 263

ASN.1

264 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Appendix C. Error Codes Sent by CMIP Services

This appendix includes descriptions of error codes from ACYAPHDH, which is
shipped in the AMACLIB data set of the SYS1.MACLIB data set. These errors can
be received in the following:
v MIB.ServiceError strings
v CMER VTAM internal trace (VIT) entries.

MIB.ServiceError Error Codes
These errors can be received in MIB.ServiceError strings.

0 (Indicates success.)

Explanation: This is used to denote normal, correct processing.

Action: None, everything is working correctly.

7 MB_ERR_ALLOC

Explanation: An attempt was made to allocate memory for the processing of a message. The operating system
returned an error. The platform will halt processing of this message and attempt to recover. This message will be lost.
If the condition was transient, all later messages may work correctly.

Action: This should occur only if the system is reaching a private or common storage area (CSA) storage limit. If this
is encountered and does not seem to be transient, you will need to increase the limit causing the problem. If this error
is received by the application program from an API function and there is a corresponding REQS record in the VIT with
a nonzero return code, the LPBUF pool is not large enough and should be increased.

8 PROGRAM_CHECK

Explanation: A condition that should not be able to happen has occurred.

Action: Call IBM Service. Please provide the error log and as much information about what was being processed as
possible. This includes:
v The trace, if one exists
v The message being processed
v The set of instantiated objects
v The list of associations
v The set of outstanding CMIP operations.

250 AUTHENTICATION_FAILED

Explanation: The association could not be established due to security.

Action: Consult the directory definition file on both systems to resolve inconsistencies.

251 AUTHENTICATION_INFO_MISSING

Explanation: Either data encryption standard (DES) based security or application-program-to-application-program
security is required. The association could not be established due to security.

252 AUTHENTICATION_MECH_UNKNOWN

Explanation: There is a mismatch in the ASN.1 for the association request between the two systems.

Action: Call IBM Service.

© Copyright IBM Corp. 1995, 2001 265

300 BER_BAD_TYPE

Explanation: The encode/decode functions of CMIP services were called to parse a message. They were told to
parse it using the syntax defined as an identified module and type. The module is one that is loaded, the type name is
not.

Action: If the message being processed is a CMIP message, and the application program uses only
MIBSendCmipRequest and MIBSendCmipResponse, call IBM Service. If the message being parsed was one that was
passed to the platform with MIBSendServiceRequest or MIBSendRequest, correct the type name in the message to be
one that is contained in the indicated module.

301 BER_BAD_MODULE

Explanation: The encode/decode functions of CMIP services were called to parse a message. They were told to
parse it using the syntax defined as an identified module and type. The module is one that is not loaded.

Action: If the message being processed is a CMIP message, and the application program uses only
MIBSendCmipRequest and MIBSendCmipResponse, call IBM Service. If the message being parsed was one that was
passed to the platform with MIBSendServiceRequest or MIBSendRequest, correct the module name in the message.

302 BER_NULL_TYPE

Explanation: The portion of CMIP services that calls the encode/decode functions passed in a NULL type name to
be processed.

Action: Call IBM Service.

303 BER_NULL_MODULE

Explanation: The portion of CMIP services that calls the encode/decode functions passed in a NULL module name
to be processed.

Action: Call IBM Service.

304 BER_NULL_STRING

Explanation: The string passed to the encode/decode component of CMIP services was NULL.

Action: Call IBM Service

305 BER_NULL_STRUCT

Explanation: The data structure passed to the encode/decode component of CMIP services to contain the result was
NULL.

Action: Call IBM Service.

306 BER_BAD_METATABLE

Explanation: The ASN.1 data set is not correct.

Action: Reload the ISTASN1 data set from the distribution media.

307 BER_UNKNOWN_TYPE

Explanation: The data type derived for a node in the tree constructed while parsing a message is unrecognized.
Since these are the base types defined in ASN.1. this should not happen.

Action: Call IBM Service.

Error Codes

266 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

308 BER_UNKNOWN_MEMBER

Explanation: While processing a SET or SEQUENCE, the encode/decode component of CMIP services encountered
an element that did not belong in the SET or SEQUENCE.

Action: If this occurred while processing a string value generated by the application, correct the application program
to send a valid value. If this occurred while processing a received BER buffer from a peer entity, the syntaxes on the
two systems do not match. You will need to analyze the differences, determine which version is correct and load the
corrected syntaxes on one or both systems.

309 BER_UNKNOWN_ALTERNATIVE

Explanation: While processing a CHOICE, the encode/decode component of CMIP services encountered an element
that did not represent one of the valid alternatives for the CHOICE.

Action: If this occurred while processing a string value generated by the application, correct the application program
to send a valid value. If this occurred while processing a received BER buffer from a peer entity, the syntaxes on the
two systems do not match. You will need to analyze the differences, determine which version is correct and load the
corrected syntaxes on one or both systems.

310 BER_NO_END_PARENTHESIS

Explanation: While parsing the string message from an application program CMIP services determined that there
should have been a closing parenthesis at the indicated location in the string. This represents the end of a SET,
SEQUENCE or CHOICE.

Action: Correct the string message.

311 BER_NO_START_PARENTHESIS

Explanation: While parsing the string message from an application program CMIP services determined that there
should have been an opening parenthesis at the indicated location in the string. This represents the beginning of a
SET, SEQUENCE or CHOICE.

Action: Correct the string message.

312 BER_NO_MORE_STRING

Explanation: Additional information was expected in the string buffer. The buffer terminated prematurely. There were
either missing mandatory elements or (at least) some missing closing parentheses in the string.

Action: Correct the string value.

313 BER_PARSE_ERROR

Explanation: An error occurred during the parsing of the message. The message is invalid. This error is only issued
when no more specific error is encountered.

Action: Correct the string value.

314 BER_IMPLICIT_CHOICE

Explanation: While parsing the string message the encode/decode component of CMIP services encountered an
IMPLICIT CHOICE. This is not legal in ASN.1. This should have been caught and converted to an EXPLICIT CHOICE
by the ASN.1 compiler.

Action: Correct the string value.

315 BER_CANNOT_RESOLVE

Explanation: An ANY DEFINED BY was encountered for which an ANY TABLE was defined. This table defines all of
the values that will be understood for ANY DEFINED BY resolution. The table did not include the value provided.

Action: Correct the value in the string or add the value to the ANY DEFINED BY table.

Error Codes

Appendix C. Error Codes Sent by CMIP Services 267

316 BER_NEED_LABEL

Explanation: Either a CHOICE was encountered where the user tried to omit the label of the chosen alternative, or a
SET was encountered in which the user failed to specify the label of an element. Both of these require labels in order
to provide unambiguous resolution of the string.

Action: Add the required label to the string.

317 BER_MISSING_MEMBER

Explanation: A mandatory element was omitted from a SET or SEQUENCE, or the label for the mandatory element
was misspelled.

Action: Correct the string.

319 BER_NO_PARENT

Explanation: In order to resolve an ANY DEFINED BY it is necessary to find the element of the syntax that contains
the value to be used to do the resolution. Since ASN.1 requires that this be a mandatory member of the same
SEQUENCE, the parsing code goes to the “parent” of the ANY DEFINED BY and searches for the resolution node.
The ANY DEFINED BY did not contain a valid reference to a parent.

Action: Call IBM Service.

320 BER_BAD_DN_PARSE

Explanation: While parsing a DistinguishedName some kind of error occurred. This error will be logged before the
log of BER_BAD_DN_PARSE. This error serves to narrow the investigation to a DN if the problem is difficult to isolate.

Action: See the previously logged errors and fix the error in the syntax of the name.

321 BER_BAD_RESOLUTION_NODE

Explanation: There are only two data types that can be used to provide resolution for an ANY DEFINED BY. These
are INTEGER and OBJECT IDENTIFIER. A case was found while processing this message where the element of the
syntax being used for ANY DEFINED BY resolution was another data type.

Action: Correct the syntax of the resolution node in the ASN.1 syntax. If the syntax is determined to be correct, call
IBM Service.

322 BER_MISSING_RESOLUTION_NODE

Explanation: An ANY DEFINED BY was encountered while processing the message that does not reference an ANY
TABLE to allow resolution of data types. If the message is being decoded, any application program to which the
message is sent will receive the contents of this ANY DEFINED BY in BER. This is probably not what the application
program s are expecting.

Action: Add an ANY TABLE REF and ANY TABLE to this syntax in the ASN.1.

323 BER_LABEL_MISMATCH

Explanation: The string being parsed by the encode/decode component of CMIP services contains an initial label
that does not match any of the possible initial labels for the module.type being parsed.

Action: Correct the string.

325 BER_NOT_BOOLEAN

Explanation: The accepted BOOLEAN values are ’TRUE’, ’true’, ’FALSE’, ’false’ and any ASN.1 value references
that are defined to be BOOLEAN values.

Action: Correct the value in the string.

Error Codes

268 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

326 BER_NOT_INTEGER

Explanation: The accepted INTEGER values are composed of digits optionally prepended with a ’+’ or ’-’ sign
character, or a defined ASN.1 value reference.

Action: Correct the value in the string.

327 BER_NOT_REAL

Explanation: The syntax expected for a REAL value is exactly the syntax accepted by the C standard function scanf
using the format string ″%lg″. Anything else will be rejected.

Action: Correct the value in the string.

328 BER_NOT_NULL

Explanation: The accepted NULL values are ’NULL’, ’null’ or a defined ASN.1 value reference to a value of type
NULL.

Action: Correct the value in the string.

329 BER_NOT_BIT_STRING

Explanation: The accepted BIT STRING values are composed of zero or more ’1’ and ’0’ characters or a value
reference to a value of the type BIT STRING.

Action: Correct the value in the string.

330 BER_NOT_HEX_STRING

Explanation: The value being parsed as an OCTET STRING was composed of characters other than legal
hexadecimal digits so it was assumed to be a value reference. The value reference was not found.

Action: Correct the value in the string.

331 BER_BAD_HEX_STRING

Explanation: The value specified for an OCTET STRING was not a legal value. It must be an even number of hex
digits.

Action: Correct the value in the string.

332 BER_NOT_OI

Explanation: The value encountered for an OBJECT IDENTIFIER does not conform to the dotted-decimal notation
and is not a value reference. All values for OBJECT IDENTIFIERs must be composed of digits and periods, and they
must contain at least 2 components. Legal values: ’1.3.18.0.2.4.5’, ’1.2’ Illegal values: ’1’, ’joint-iso-ccitt.9.3.2.7.4’

Action: Correct the value in the string.

333 BER_BAD_TIME

Explanation: If a string is being processed, the value specified did not conform to the format specified for times in
the string API documentation. If a BER-encoded buffer is being processed, the value does not represent a valid time in
BER format.

Action: Correct the value in the string.

334 BER_BAD_ENUMERATED

Explanation: The value encountered was not a valid ENUMERATED.

Action: If the value being processed is a string, correct the string. If the value is a BER buffer, the syntaxes
understood by the two systems are different. Align the syntax definitions on the two systems.

Error Codes

Appendix C. Error Codes Sent by CMIP Services 269

335 BER_BAD_PRINTABLE_STRING

Explanation: The value encountered was defined to be a PrintableString. It contained characters that are not
allowed in the specification of the PrintableString type. The allowed values for Printable string are:

A-Z, a-z, 0-9, space, '\', '(', '0', '+',
',', '-', '.', '/', ':', '=' and '?'

Action: Correct the value to be a valid PrintableString.

336 BER_BAD_NUMERIC_STRING

Explanation: The value encountered was not a valid NumericString. NumericStrings can only contain digits and
spaces.

Action: Correct the value to be a valid NumericString.

337 BER_BAD_VISIBLE_STRING

Explanation: The value encountered was defined to be of type VisibleString. It contained one or more characters
that are not allowed in this data type. The allowed characters are: A-Z, a-z, space and punctuation.

Action: Correct the value to be a valid VisibleString.

338 BER_BAD_GRAPHIC_STRING

Explanation: The value encountered for a GraphicString contained a character that is not presently supported by
CMIP services for GraphicString. At the present time the platform only supports the printable characters in a normal
ASCII character set.

Action: Correct the value to be within the set supported by the platform.

339 BER_BAD_GENERAL_STRING

Explanation: The value encountered was not a valid general string.

Action: Correct the value.

340 BER_BAD_IA5_STRING

Explanation: The value encountered was not a valid IA5 string.

Action: Correct the value.

341 BER_DUPLICATE_MEMBER

Explanation: A SET is allowed to contain each element only once. While parsing the message a member was found
twice in the SET.

Action: Correct the value to include only one occurrence of each member in the SET.

343 BER_NOT_STRAIGHT_BER

Explanation: Encoding an ANY is impossible with only the information in the metadata. It might contain a value of
literally any type - each of which would be encoded differently. The ANY type is deprecated and should not be used.

Action: Change the syntax to an ANY DEFINED BY if possible. Avoid the use of the syntax. If you must flow a value
of this syntax, it must be provided in BER format. The BER format is an even number of hex digits surrounded by <>.

344 BER_UNRESOLVED_EXTERNAL

Explanation: An imported symbol was not found in the ASN.1 while processing a message. This will not be the case
if CMIP services is initialized normally (all syntaxes are checked for completeness when the platform is initialized if
they are contained in the normal set). If you added syntaxes to the user syntax section of the presentation initialization
file, there may be unresolved externals. These will have been indicated by a warning message when the platform was

Error Codes

270 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

started. If you have added syntaxes after initialization, these may not have been complete.

Action: Load additional syntaxes.

345 BER_STILL_MORE_STRING

Explanation: After parsing a message using the syntax information loaded, there was extra data in the buffer. The
buffer must include exactly one syntactic construct - a complete message and no more. This will often happen if a
string value includes too many closing parentheses at the end.

Action: If this is encountered in string processing, correct the string. If it is encountered while decoding a BER buffer,
the syntaxes understood by the two systems is different. Align the syntaxes.

347 BER_DUP_MODULE

Explanation: The ASN.1 module you attempted to load is a duplicate of one already loaded. The name of the file
that contained the duplicate module will be traced.

Action: Reload the ISTASN1 data set from the distribution media.

348 BER_UNRESOLVED_MODULE_REF

Explanation: While trying to resolve all of the imported symbols in the syntaxes loaded an entire module was not
found. All references to it will be unresolved.

Action: Reload the ISTASN1 data set from the distribution media.

349 BER_UNRESOLVED_REF

Explanation: An external reference cannot be resolved in the ASN.1 syntax loaded. The module that was supposed
to contain the type was found, but there was no such type name defined in the module. The list of all of the
unresolved references will be written to the VTAM internal trace.

Action: The external reference that tried to use the type is likely wrong. Verify that you are trying to use a type that
is defined in the module from which you are referencing it.

354 BER_FAILED_SUBTYPE

Explanation: The value provided was not allowed by the subtype specification.

Action: Change the value to be one of the value allowed by the subtype.

356 BER_BAD_CONSTRUCTED

Explanation: An element of the received BER buffer indicated in its tag that the value was a constructed value. The
corresponding syntax loaded in CMIP services is a data type that cannot be constructed. These types are:
v INTEGER
v ENUMERATED
v BOOLEAN
v NULL

Action: Align the syntaxes in use by the peer systems.

357 BER_BAD_PRIMITIVE

Explanation: The value in the BER buffer for an explicit tag is encoded as a primitive type. It is not possible to have
an explicit tag that is primitive since it must contain the other tag and a value.

Action: Align the syntaxes in use by the peer systems. Fix the peer system’s encoding for explicit tags.

Error Codes

Appendix C. Error Codes Sent by CMIP Services 271

358 BER_BAD_INITIAL_OCTET

Explanation: The first octet of a BER buffer received from a peer application program is not correct. It does not
represent a valid value for the data type being decoded.

Action: Align the syntaxes in use by the peer systems. It may be that the peer sent a message that is valid, but not
within the scope of CMIP services.

359 BER_BAD_BOOLEAN

Explanation: A value received from a peer application program was being decoded as a BOOLEAN type. Its length
was not 1 octet, which is required by BER.

Action: Align the syntaxes used by the peer application programs. Correct the encoding performed by the peer
system.

360 BER_BAD_OI

Explanation: An OI value contained in a message being processed by the encode/decode component of CMIP
services is not valid. If the message being processed is a string message from an application program the OI is not a
legal dotted-decimal value. If the message is a BER buffer from a peer application program we have to trust the peer
to have encoded a valid OI (it is only bits, after all). If this happens it will be preceded by one of two messages. One
(PROGRAM_CHECK) indicates that the peer sent us an OI that will take more than 300 bytes to store in the string
form. The other (MALLOC_ERROR) indicates we could not allocate memory.

Action: If the message was a string message, fix the value. If a MALLOC_ERROR happened, solve that problem. If
you need to encode OIs that will be longer than 300 bytes in string form, call IBM Service.

361 BER_BAD_NULL

Explanation: A value for the type NULL contained in the BER buffer is not valid. The length is not zero. The peer
system is not encoding values correctly or the syntaxes understood by the two systems are not the same.

Action: Align the syntaxes. If they are already aligned correct the peer application.

362 BER_EMPTY_BIT_STRING

Explanation: A received BER buffer contained a BIT STRING of length zero. The peer system is not encoding
values correctly or the syntaxes understood by the two systems are not the same.

Action: Align the syntaxes. If they are already aligned correct the peer application program.

363 BER_BAD_PARAMETERS

Explanation: The encode/decode functions in CMIP services were called with an invalid parameter.

Action: Call IBM Service.

375 RDN_SEP_AT_BEGIN_OF_DN

Explanation: An RDN separator (;) was found at the beginning of a short-form DN.

Action: Correct the first character of the short-form DN.

376 AVA_SEP_AT_BEGIN_OF_DN

Explanation: An AVA separator (=) was found at the beginning of a short-form DN.

Action: Correct the first character of the short-form DN.

Error Codes

272 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

377 SPACE_AT_BEGIN_OF_DN

Explanation: A space was encountered at the beginning of a short-form DN. A short-form DN must begin with an
OBJECT IDENTIFIER or a value reference (a label).

Action: Correct the first character of the short-form DN.

378 INVALID_CHAR_AT_BEGIN_OF_DN

Explanation: An invalid character was found at the beginning of a short-form DN. The first character of the
short-form DN was not a digit, an alphabetic character, an RDN separator (;), an AVA separator (=), or a space.

Action: Correct the first character of the short-form DN.

379 RDN_SEP_AT_BEGIN_OF_RDN

Explanation: An RDN separator (;) was found at the beginning of an RDN.

Action: Correct the value of the short-form DN.

380 AVA_SEP_AT_BEGIN_OF_RDN

Explanation: An AVA separator (=) was found at the beginning of an RDN.

Action: Correct the value of the short-form DN.

381 SPACE_AT_BEGIN_OF_RDN

Explanation: A space was found at the beginning of an RDN while parsing a short-form DN.

Action: Correct the value of the short-form DN.

382 INVALID_CHAR_AT_BEGIN_OF_RDN

Explanation: There is an invalid character at the beginning of an RDN in a short-form DN.

Action: Correct the attribute type in the short-form DN.

383 INVALID_ALPHA_IN_INTEGER_VALUE

Explanation: An alphabetic character was found while processing an INTEGER form attribute type in a short-form
DN.

Action: Correct the attribute type in the short-form DN.

384 INVALID_SPACE_IN_INTEGER_VALUE

Explanation: A space was found while processing an INTEGER form attribute type in a short-form DN.

Action: Correct the attribute type in the short-form DN.

385 INVALID_CHAR_IN_INTEGER_VALUE

Explanation: An invalid character was found while processing an INTEGER form attribute type in a short-form DN.
This character was not an alphabetic character, a space or an AVA separator (an equals sign).

Action: Correct the attribute type in the short-form DN.

386 INVALID_SPACE_IN_OI_VALUE

Explanation: While parsing the attribute type in a short-form DN a space was encountered. The only valid characters
are digits and period.

Action: Correct the attribute type in the short-form DN.

Error Codes

Appendix C. Error Codes Sent by CMIP Services 273

387 INVALID_CHAR_IN_OI_VALUE

Explanation: While parsing the attribute type in a short-form DN an invalid character was encountered. The only
valid characters are digits and period.

Action: Correct the attribute type in the short-form DN.

388 INVALID_SPACE_IN_SYMBOLIC_VALUE

Explanation: While parsing an attribute type in a short-form DN, a symbolic value was found that contains a space.
The attribute type must be either a valid OBJECT IDENTIFIER value (in dotted-decimal) or a symbol reference. The
attribute type MUST be immediately followed by an equals sign.

Action: Correct the attribute type in the short-form DN.

389 INVALID_CHAR_IN_SYMBOLIC_VALUE

Explanation: While parsing an attribute type in a short-form DN, a symbolic value was found that contains
characters other than letters and digits. It is possible that the attribute type was supposed to be an OBJECT
IDENTIFIER, but its first character was a letter so it was interpreted as a symbolic value.

Action: Correct the attribute type in the short-form DN.

390 INVALID_CHAR_IN_ATTR_VALUE

Explanation: One of the two following errors occurred while parsing a short-form DN: a character other than the
RDN separator (semi-colon) was found after close quote. A non-printable character was found in a value.

Action: Correct the value for the short-form DN.

391 INVALID_SPACE_IN_ATTR_VALUE

Explanation: A value portion of an RDN in the short-form DN contained a space and the value was not surrounded
by quotes. This is ambiguous; the platform does not know whether the space is part of the value, or merely white
space.

Action: Correct the value of the short-form DN by eliminating the space or surrounding the value in quotes.

392 PREMATURE_END_OF_DN

Explanation: A short-form DN value was incompletely specified. A short-form DN must be composed of complete
RDNs. Each RDN must include a type (OI), an equals sign and a value. This may have occurred due to a dangling
semicolon at the end of the name, or it may be due to an RDN with a type but no value.

Action: Correct the value of the short-form name.

393 INVALID_SPACE_AT_END_OF_RDN

Explanation: While parsing a short-form DN, CMIP services found a space immediately following the RDN separator
(the semi-colon). This is not allowed. This must be the beginning of the next object identifier and object identifiers
cannot contain spaces.

Action: Correct the name value by deleting any spaces in the OI portions of all RDNs.

394 BOTH_QUOTE_TYPES_USED

Explanation: A short-form DN value was contained both kinds of quotes and the attempt to surround it with quotes
(during tranformation to long-form) failed.

Action: Correct the value of the short-form name.

Error Codes

274 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

400 REPL_ERR_INVLD_VERBCODE

Explanation: This indicates that a message is being passed through CMIP services which is not of a known type. In
general, CMIP services expects CMIP messages or a small handful of internal utility messages. The message that
CMIP services just received was not one of the types that the code can process.

Action: Call IBM Service.

401 REPL_ERR_MISSING_ASN1_TREE

Explanation: This indicates that a message was received that was basically valid (i.e. CMIP services recognized the
message type and a couple of header fields), but the ASN.1 parse tree (which is required for all processing) was
missing from the message. Processing on this message cannot continue.

Action: Call IBM Service.

402 REPL_ERR_OBJCLASS_MISSING

Explanation: The object class is a required field in virtually all CMIP messages. If the CMIP message that CMIP
services is processing requires an object class and one is not present, this error will be logged. The fact that a
required attribute is missing should have been noticed prior to CMIP services receiving the message, therefore this
indicates an internal error.

Action: Call IBM Service.

403 REPL_ERR_OBJCLASS_INVALID

Explanation: The value of the managed object class component in the message is not recognized as a valid value.
This can either mean that the valid GDMO definition has not been loaded by CMIP services, or a truly invalid value
was specified.

Action: Correct the object class.

404 REPL_ERR_OBJINST_MISSING

Explanation: This indicates that either a CMIP message that requires the managed object instance component did
not have one, or (more likely) that a locally generated request that requires the managed object instance attribute did
not specify one.

Action: Include a valid managed object instance in the request.

405 REPL_ERR_OBJINST_INVALID

Explanation: This indicates that the specified managed object instance is in an invalid format and could not be
encoded. There are a number of cases where this can occur:
v During CMIP message processing
v During processing of a locally generated request.

Action: Verify the specified managed object instance against the associated naming rules in the name bindings used
to construct the name.

406 REPL_ERR_DUPLICATE_OBJINST

Explanation: This indicates that either a CMIP message was received which tried to create an instance that already
exists, or a local registration was attempted for an instance that already exists.

407 REPL_ERR_NO_SUCH_OBJINST

Explanation: This indicates that the managed object instance specified in the CMIP message or local request could
not be found in the current instance tree. This could mean that some of this instances parents were not present in the
tree either.

Error Codes

Appendix C. Error Codes Sent by CMIP Services 275

408 REPL_ERR_MOI_OC_MISMATCH

Explanation: During the processing of a non-create CMIP message CMIP services determined that the managed
object class specified in the message was not the actual class object identifier (2.9.3.4.3.42), nor the actual managed
object class of the specified instance, nor one of the allomorphic object classes of the specified instance.

Action: Change the original CMIP request to either 2.9.3.4.3.42 or to a correct managed object class for the
specified managed object instance.

409 REPL_ERR_NAME_CREATE_FAILED

Explanation: An error occurred creating an object instance.

Action: Look at CMER records in the VTAM internal trace for additional information.

410 REPL_ERR_GDMO_FILE_BAD_VERS

Explanation: This indicates that CMIP services attempted to load an initialization file with a version number different
from the version currently implemented in CMIP services.

Action: Reload the ISTGDMO data set from the distribution media.

411 REPL_ERR_NOTHING_TO_DELETE

Explanation: This indicates that the delete was directed at a specific managed object, but that managed object
(which exists) cannot be deleted for some reason. The main reasons for this are all related to name binding rules. The
managed object instance may not be deleteable, or it might only be deleteable if it contains no instances (and does
contain instances), or it should delete contained instances but one or more of them is not deleteable.

Action: Verify the name binding rules for the managed object instance that was to be deleted to determine why the
instance could not be deleted. You might need to specify a scope in order to delete the whole sub-tree. Perhaps you
shouldn’t be attempting to delete this instance at all.

412 REPL_WRN_OBJCLASS

Explanation: This indicates that one or more of the object classes that were specified in the list of allomorphs or
create handlers on a local registration are either unknown (invalid) or do not allow creates (for create handler list).

Action: During run time the application program should determine if the object classes that were rejected are a
problem. If so, the object should probably be deleted. If it is not a problem, nothing needs to be done since the object
was registered without the erroneous classes. For future runs the application program code should be fixed to use a
valid set of managed object classes. This means that the managed object class object identifiers should all be loaded
in the CMIP services initialization file, and that all of the managed object classes specified in the create handlers list
should be createable.

413 REPL_ERR_ALREADY_AN_STM

Explanation: This indicates that during the final phase of registration for a new instance, which was requesting to be
a subtree manager, a parent instance was found which was already a subtree manager. Nested subtree managers are
not legal.

Action: You should check to see if the parental subtree manager is one you expected to be there. If it is, then you
either need to move the new subtree manager to a new location (or don’t register it as a subtree manager). If the
existing subtree manager is not supposed to be there, try to figure out how it got there and get rid of it.

414 REPL_ERR_INVLD_STM_CHILD

Explanation: Once a subtree manager has registered control of a portion of the naming tree, only instances
registered over the same application program connection are allowed on that subtree. If an instance from another
application program connection tries to register under a subtree reserved by a different application, the new
registration will be refused.

Action: Do not attempt to register a new instance under some other application program’s subtree.

Error Codes

276 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

415 REPL_ERR_SCOPES_TO_NOTHING

Explanation: This indicates that there was a scoped message which could have addressed multiple instances but in
the end addressed none. The list could be pared down due to name binding rules (for deletes), or access control.

Action: If there were instances that you wanted this to be sent to, consider altering the scope to try to include the
instances. Perhaps you should re-evaluate to determine if you are actually able to address the instances that you were
trying to.

416 REPL_ERR_INVALID_SCOPE

Explanation: This indicates that either the scope is syntactically incorrect, or that the destination was GlobalRoot
(i.e. a NULL distinguished name) and the scope included level 0 (level zero does not exist for GlobalRoot scoping).

Action: Compare your scope to the standards. Verify that it does not include level 0 for a GlobalRoot scope and that
it is syntactically correct according to the standards.

417 REPL_ERR_COMMITDN_NOTIN_LIST

Explanation: This indicates that an attempt was made to process an instance which was thought to be pending
registration (either to complete the registration, or to terminate the registration). This instance was not found on the list
of pending creations.

Action: There is no recovery action for this. It indicates that either invalid instance information was passed in, or that
the pending instance was removed during the cleanup processing of a related instance.

419 REPL_ERR_NO_ONE_2_SEND_CRT_2

Explanation: A create was received for a managed object class which does not have a registered create handler for
it. A create handler is an instance that indicates that it is capable of receiving, processing, and responding to CMIP
create messages for a specified managed object class. If there is no create handler registered for a specified
managed object class, CMIP services does not know where to send the create for processing.

Action: If you do not wish to handle creations for the specified managed object class, then nothing needs to be
done. If you would like to be able to accept creates for the specified managed object class, then an application
program must register an instance with CMIP services as a create handler for the specified managed object class.

420 REPL_ERR_NOONE_2_SEND_EVNT_2

Explanation: An event report or notification was received which had no specific destination associated with it (an
unambiguous AE title) and there was no event handler registered with CMIP services.

Action: Call IBM Service.

421 REPL_ERR_ALREADY_EVNT_HNDLR

Explanation: An attempt was made to register an instance with the event handler capability set, but there is already
an event handler registered. CMIP services only supports the existence of one event handler at a time.

Action: Call IBM Service.

422 REPL_ERR_NAMEBIND_INVALID

Explanation: This indicates that the name binding that was specified was either in an invalid format (primarily this
means length 0), or that the value specified could not be found in the tables of valid name bindings. The tables are
loaded by CMIP services at initialization time.

Action: Check to make sure that a valid name binding value was specified.

Error Codes

Appendix C. Error Codes Sent by CMIP Services 277

424 REPL_ERR_CRT_FAIL_NB

Explanation: Either the name binding that was specified does not allow creation via CMIP create messages, or there
was no name binding specified and one could not be found that allowed CMIP create messages.

Action: Either specify a different name binding (one that allows CMIP creates), or rethink whether you should be
trying to remotely create an instance of this managed object class.

425 REPL_ERR_CRT_FAIL_NO_NB

Explanation: This indicates that there is either no name binding to create an instance of the specified managed
object class under the managed object class of the specified parent instance, or there is no legal name binding which
has a naming attribute that matches the requested naming attribute of the new instance.

Action: First check that there is a name binding that uses the desired naming attribute, and verify that this name
binding is being loaded in CMIP services initialization file. Second check that the desired name binding allows creation
of an instance of the specified managed object class under the managed object class of the parent. If it doesn’t,
consider picking a different parent, a different managed object class for the new instance, a different name binding (or
perhaps specify a name binding if you were not), or change the attribute type of the final RDN to one that matches a
useful name binding.

426 REPL_ERR_DLT_FAIL_CONTOBJS

Explanation: This indicates that the base instance that this delete was sent to (either no scope, or a base only
scope) only allows deletes if the instance does not contain any child instances - and the instance does contain child
instances.

Action: Either delete all of the kids specifically, or include a scope with the delete in order to wipe out all instances at
and below the base instance.

427 REPL_ERR_DLT_FAIL_TO_DCO

Explanation: This indicates that some instance inside of the sub tree of the base instance cannot be deleted (even
though the base instance’s name binding indicates that it should delete contained instances). This could be because
of access control, or because the name binding of the child instance does not allow deletes in some way (no deletes
at all, only if no contained objects and it contains objects).

Action: Try deleting the child instances individually, or with a scope that includes the whole subtree.

428 REPL_ERR_DLT_FAIL_NB

Explanation: This indicates that the instance is not allowed to be deleted by use of CMIP delete messages. The
name binding indicates that this instance cannot be deleted.

Action: You cannot delete the specified instance. Perhaps the instance should not deleted, or perhaps it should have
been created with a different name binding.

429 REPL_ERR_NO_LOCALDN

Explanation: A CMIP message was sent with the local DN form of distinguished name specified, but there is no
instance registered as a local DN handler for the AE title of the association that this message was received over. Local
instances can register with CMIP services indicating that their distinguished name can be used as the initial RDNs for
any local DN form message received over an association with a specified AE title.

Action: Either a local DN handler should be registered for the desired AE title, or the CMIP message should not use
local DN form of distinguished name.

430 REPL_ERR_DUPLICATE_LDNH

Explanation: An instance tried to register as a local DN handler for an AE-Title that already had another instance
registered as a local DN handler for it. CMIP services does not allow multiple Local DN handlers to register for the
same AE-Title since there is no way to determine which one to choose.

Action: Determine which of the instances should be the Local DN handler and register it first (or only register that

Error Codes

278 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

valid one). If you don’t care about receiving the error message, but want to make sure that there is a Local DN
handler for the AE-Title, then by all means, make as many registration attempts as you want.

431 REPL_REG_CREATED

Explanation: This is an internal error code. It should never be externalized.

Action: If this error is logged or externalized, a programming error exists in CMIP services. Call IBM Service.

432 REPL_CRT_COMPLETED

Explanation: This is an internal error code. It should never be externalized.

Action: If this error is logged or externalized, a programming error exists in CMIP services. Call IBM Service.

433 REPL_REG_COMPLETED

Explanation: This is an internal error code. It should never be externalized.

Action: If this error is logged or externalized, a programming error exists in CMIP services. Call IBM Service.

434 REPL_REG_SUSPENDED

Explanation: This is an internal error code. It should never be externalized.

Action: If this error is logged or externalized, a programming error exists in CMIP services. Call IBM Service.

435 REPL_ERR_ATTRTYPE_MISMATCH

Explanation: The attribute type of the final RDN did not match the object identifier of the naming attribute for the
specified name binding. If you specify a name binding and a full distinguished name (including the new final RDN)
CMIP services checks to make sure that they are internally consistent. Receiving this error indicates that you provided
inconsistent values.

Action: Provide a consistent name binding and distinguished name.

436 REPL_ERR_CANNOT_CHANGE_NB

Explanation: During the first phase of processing for CMIP create requests, a name binding is either specified or
selected for any non-auto instance naming forms of creates. The name binding is specified or chosen based on a
number of factors including the validity of the naming attribute and the name binding’s ability to be created. If this
value is changed in the second phase of create processing to something that changes some of these values (such as
changing the naming attribute), the values may not be legal any more. It is illegal to select a name binding that would
invalidate the instance creation information.

Action: If you must change the name binding value, select a value that uses the same naming attribute, allows
instance creation, and allows the same managed object class to be instantiated under the same parent managed
object class.

439 REPL_ERR_NB_DISALLOWS_NEWOC

Explanation: There are three points to this triangle of validation. Two of these points are fixed. First is the managed
object class of the parent (which is fixed). The second is the name binding (which is also fixed). The third is the
managed object class of the instance being registered (this is what you just tried to change from the original value).
The new managed object class must allow the use of the original name binding to create a new instance of the new
managed object class under an instance of the parents managed object class.

Action: Either use the original managed object class, or pick a managed object class that allows the use of the old
name binding under the existing parent instance.

Error Codes

Appendix C. Error Codes Sent by CMIP Services 279

440 REPL_ERR_SYNC_NOT_SUPPORTED

Explanation: Atomic synchronization is not currently supported by CMIP services. Atomic synchronization is rejected
if that option is specified and the scope of the message includes any children of the baseManagedObjectInstance. The
default for the synchronization field is bestEffort.

Action: Specify bestEffort, remove the synchronization field and allow it to default, or trim the scope to include only
the baseManagedObjectInstance.

500 CRC_ERR_INVLD_VERBCODE

Explanation: This indicates that a message is being passed through CMIP services which is not of a known type. In
general, CMIP services expects CMIP messages or a small handful of internal utility messages. The message that the
CMIP component just received was not one of the types that the code can process.

Action: There is not much that can be done about this. Primarily this means that there was an internal error of some
kind that should be reported back to IBM. Please note all of the information that is logged along with this error code
(as well as any logs immediately before and after this one). CMIP services will attempt to reject this message and
continue processing.

501 CRC_ERR_INVLD_SESSHAND

Explanation: This indicates that somehow the CMIP component received a message that contained a Association or
Session handle which was not a valid value. In most cases this indicates an aborted session, but application program
s are allowed to specify the Association/Session to use for routing the message. This error might be reported because
an invalid value was specified by the application. It is rare that this error is caught in the CMIP component since the
messages pass through other components which validate these fields before it gets to the CMIP component.

Action: If the application program selected a bad value, the application program should be fixed. If the application
program s value was valid or the application program did not specify a value, then it is likely that the
Association/Session was aborted. CMIP services will reject this message and continue processing.

502 CRC_ERR_INVLD_INVOKEID

Explanation: This means one of the following:

v A CMIP CancelGet was attempted using an invoke id that was not for a get request.

v The invoke id field was missing from the message.

v The invoke id on a response/confirm does not match any of the outstanding indication/request invoke ids.

There are two primary causes of this set of problems:

v The application program specified a bad invoke id value.

v The Association/Session over which this message was traveling has been aborted.

Action: Determine if this is an application program error (if the application program returns a different invoke id value
than was passed to it in the original message). Fix the application program error if that’s what it was. If the invoke id
value was valid, check to see if there were any error messages logged to indicate that the Association/Session was
aborted. If it was, determine if there is any action you can take to prevent it from happening again. If there was no
error logged, then the Association/Session was aborted in a ″normal way″. CMIP services will reject the message and
continue processing.

503 CRC_ERR_DPLCT_INVOKEID

Explanation: This indicates that an application program (local or remote) tried to re-use an invoke id that has not yet
been completed. CMIP services does not time out invoke ids or re-use invoke ids in any way. But an application
program can specify its own invoke ids, or the remote application program may be using a stack other than CMIP
services which does time out and re-use invoke ids. In this event an outstanding invoke id, which has not yet
completed processing may be re-used by an application. This is an error. The CMIP standards do not provide a way
for invoke ids to be timed out therefore CMIP services does not time them out. The most likely cause of this problem
is that the local application program is either taking to long to process the message or has an error, and the remote
requester times out the invoke id then tries to re-use it.

Action: First you should check why the application program might be taking too long to answer. Fix this if you can.

Error Codes

280 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Second you can try to extend the timeout length of the remote stack, or eliminate timeouts all together. CMIP services
will reject this message and continue processing.

504 CRC_ERR_INVLD_LINKEDID

Explanation: This indicates that an attempt was made to send a linked reply using an invoke id value (invoke id of
the original request/indication that is) in the response that is not an outstanding invoke id. In other words the
application program is attempting to send linked replies to an unknown request. The most likely cause of this is that
the Association/Session was aborted and the messages on that Association/Session were cleaned up. It is also
possible that the application program filled in the wrong linked id value in the linked response. Note that the linked id
being passed back in the linked reply should be the same value as the invoke id of the original message.

Action: Determine if this is an application program error (if the application program returns a different invoke id value
than was passed to it in the original message). Fix the application program error if that’s what it was. If the invoke id
value was valid, check to see if there were any error messages logged to indicate that the Association/Session was
aborted. If it was, determine if there is any action you can take to prevent it from happening again. If there was no
error logged, then the Association/Session was aborted in a ″normal way″. CMIP services will reject the message and
continue processing.

505 CRC_ERR_UNABLE_TO_BUILD_MSG

Explanation: This indicates that the CMIP component is attempting to construct the final full message (which may be
a reject or error response) to pass on to the next stage of processing, but is unable to complete the construction of the
message. The most likely cause of this is an out of memory condition, but it could also be related to an internal error.
An out of memory condition will be logged in a separate error log message from the component that discovered it.

Action: Refer to other errors in the trace.

506 CRC_ERR_INVLD_ROERRJ_RCVD

Explanation: This can occur when an application program goes away (primarily a manager application), or an
Association/Session is aborted and one of the partners doesn’t realize it yet. The response is sent and the invoke id is
cleaned up locally, then the partner rejects the message back because the partner is not present. When the invoke id
is looked up, it cannot be found. The condition is logged and the message is ignored (no further processing is
possible). CMIP services will continue processing.

Action: There is no action that can or needs to be taken for this.

507 CRC_ERR_INVLD_CANCELGET

Explanation: The application program issued a CancelGet request for an outstanding invoke id. The outstanding
invoke id was located, however, it was not a Get Verb. This is a violation of the CMISE standard. For a CancelGet
request, the request is rejected back to the application. For a CancelGet indication, an ROER is sent back to the
application program which generated the CancelGet.

Action: Ensure that the application program responsible for generating the CancelGet request is correctly inserting
the invoke id of the Get to be canceled into the CancelGet.

508 CRC_ERR_INVLD_INVOKEID_ON_CANCELGET

Explanation: The application program issued a CancelGet request for an invoke id that could not be located by
CMISE. For CancelGet requests, the request is rejected back to the application. For CancelGet indications, an ROER
is sent back to the application program which generated the CancelGet.

Action: The original Get request may have completed processing before the CancelGet processing had begun.

509 CRC_DELETE_RORJ_RECEIVED

Explanation: Because delete operations cannot be backed out, by the time the CMISE protocol machine receives an
RORJ from the peer protocol machine indicating that the delete response is invalid it is too late to terminate the
delete. So the RORJ is ignored and this message is logged as a warning.

Error Codes

Appendix C. Error Codes Sent by CMIP Services 281

Action: Determine why the peer entity rejected the delete response. No action is required on CMIP services system
logging the warning.

550 SSERR_STATE_INVALID

Explanation: A message was received in the Session Layer that implies a violation of the Session Layer protocol.
This may be any verb received out-of-sequence on an established connection, or any verb other than an S-Connect
received when the identified session does not exist. This will only occur if the peer entity does not implement its
Session protocols correctly, or during the short period while a session is being torn down abruptly. If all
Sessions/Associations are terminated with the graceful Release protocols, this will never occur. When one side of a
communication dies, it is possible that one or more messages will flow from the upper layers of CMIP services before
this is noticed. This will cause the messages that cause this error to be logged to be lost, just as they will be after the
upper layers are notified, since the session/association they need to use is no longer in existence.

Action: No action is required.

551 SSERR_SPDU_INVALID

Explanation: A received SPDU (Session Protocol Data Unit) was invalid. It was not correctly formed according to the
rules for Session Layer headers and data. The peer entity is producing bad SPDUs or the underlying Transport layer
(which is supposed to provide a reliable packet delivery service) has corrupted the message.

Action: This really should never happen. We have never seen it happen with any of the partner implementations. If it
does happen, that data stream will need to be analyzed to determine whether the messages (specifically this one and
the message before and after it) conform to the definition of SPDUs. If they do not, the sender or underlying transport
need to be analyzed to determine the cause. If they do, a trace of the traffic for this connection should be sent to IBM
Service.

552 SSERR_MISSING_PI

Explanation: A mandatory piece of information was omitted from an SPDU. This was either the reason on an
S-Refuse or the Transport disconnect on an S-Abort. In either case the connection will be terminated (as it would have
been if the flows had been correctly formatted). This will be logged to indicate that the peer entity is not conforming to
the defined protocol.

Action: Check the S-Refuse and S-Abort messages produced by the peer. Correct them to conform to the protocol.
The overall result will be correct in either case - a session that should have been terminated will be terminated.

553 SSERR_MISSING_UI

Explanation: An S-Data indication was received from a peer entity that included no data. Since this is an error (and
a waste of the network to be sending packets that contain nothing) the connection will be closed.

Action: Correct the peer application.

554 SSERR_VERB_INVALID

Explanation: A message received by the Session Layer from another layer in CMIP services was invalid. This is an
internal error in CMIP services.

Action: Collect all log information and any re-creation scenario possible and call IBM Service.

581 SSERR_DUPLICATE

Explanation: A duplicate session identifier has been assigned by the Session Layer. This is an internal error in the
platform.

Action: Call IBM Service.

Error Codes

282 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

557 SSERR_USERDATA_SIZE

Explanation: The protocol and profiles specify limits on the size of the user data included in the various Session
Layer PDUs. One of these limits has been violated. Normally this is the limit specified the profile of 10240 octets of
data on an S-Data message.

Action: Decrease the size of the data provided in a single message.

559 SSERR_TDISC_CONGESTED

Explanation: There was insufficient storage available to transmit the data on the connection. Congestion has
occurred locally or remotely. In an attempt to relieve this congestion this message will be discarded and the
connection terminated.

Action: Eliminate some of the traffic between these two systems or increase the resources allocated to
communication between the two systems. This is often a transient error, and merely re-establishing the connection will
work.

560 SSERR_TDISC_UNATTACHED

Explanation: A connection could not be established with the peer system. Either the system is not running, or the
platform is not running on the system.

Action: Check the address included in the log for this error. If it is correct check for connectivity with the system and
make sure a platform is running on the system. If is is incorrect you need to determine why the address was chosen.
It is derived from the destination information contained in the original message. There is a two step mapping
performed - mapping instance name to AE-Title and AE-Title to address. The original name may be incorrect, the
mapping from name to AE-Title may have produced an unexpected AE-Title, or the mapping from the AE-Title to
address may have produced an unexpected result.

561 SSERR_TDISC_ADDRESS

Explanation: The remote address is not recognized for network routing. Either the address is incorrect, or the
system is not running.

Action: Check the address included in the log for this error. If it is correct check for connectivity with the system. If is
is incorrect you need to determine why the address was chosen. It is derived from the destination information
contained in the original message. There is a two step mapping performed - mapping instance name to AE-Title and
AE-Title to address. The original name may be incorrect, the mapping from name to AE-Title may have produced an
unexpected AE-Title, or the mapping from the AE-Title to address may have produced an unexpected result. See the
description of the naming service and directory mappings to correct this.

562 SSERR_VERSION

Explanation: The session version indicator received on an S-Accept is not version 2. Only version 2 is supported.
This is the version specified in the profiles for management systems.

Action: Correct the peer application program to implement or use version 2 protocols for the Session Layer.

563 SSERR_PARTNER_ABORT

Explanation: An abort was received from the peer entity. The session is being torn down. This may represent normal
operation - if the partner issued an abort. This condition is logged to allow problem determination to know that CMIP
services received an S-Abort from the peer system.

564 SSERR_ENCLOSURE_ITEM

Explanation: The enclosure item was found in an SPDU, but segmenting is not supported. This should not happen -
we negotiate away segmentation.

Action: Correct the peer application program to eliminate segmentation.

Error Codes

Appendix C. Error Codes Sent by CMIP Services 283

568 MD_ERR_BAD_MDSMU

Explanation: A badly formed MDS-MU was received. The single place that traces this error will also trace the sense
code (what was wrong with the MDSMU) and the entire MDSMU trace.

Action: Fix the message sent by the partner application.

573 MD_ERR_SNACR_BEING_SENT

Explanation: An SNA condition report is being sent to the partner application program indicating an error has
occurred. The log will include the sense code of the error and the SNA condition report (SNACR) being sent to the
partner.

Action: Correct the condition indicated by the sense code.

574 MD_ERR_SNACR_RECEIVED

Explanation: MDS interface received a SNACR. The sense code and SNACR are included in the log.

Action: Analyze the sense code and SNACR to determine what error has occurred in the underlying SNA transport.

578 SSERR_GIVE_TOKEN_NO_DATA

Explanation: A Session Give Token PDU was received with no data following it. This is invalid for the kernel of the
Session Layer.

Action: Correct the peer application.

802 ACF_EVENT_LOOP

Explanation: Sending the event to the indicated AE-Title would cause an infinite loop in event processing. It is not
being sent. This event report attempted to use an association that is local. This would cause the event to be routed
back to CMIP services for processing causing an infinite loop. The destination of an EFD must contain either the name
of a local instance or the AE-Title of a remote AE.

Action: Change the destination on the EFD to represent a local instance or a remote AE.

803 ACF_INVALID_ASSOC_ID

Explanation: A message was received by CMIP services from one of its application programs. This message
included an association identifier (either because it was a response or because the initiator wished to use a specific
association for the request). The association identifier does not represent a currently active association, so the
message cannot be sent. This may have occurred because:

v The application program used an invalid handle that never represented a valid association.

v The application program is trying to use the same association for all of its requests and the association has been
terminated.

v The application program is attempting to respond to an indication and the association terminated between the time
the indication was received and the response was sent.

Action: For responses, use the correct association handle, exactly the information provided in the source of the
indication. For requests use normal routing (do not include an association handle) or correct the handle value.

806 ACF_INVALID_USER_ID

Explanation: An object asked to terminate an association which was started by another object explicitly. This is not
allowed. When an object asks to start an association using the ACF.Associate message and that object has registered
as an AE, the association is reserved for its use. No other object will be allowed to use it or terminate it.

Action: Send the termination request from the correct object.

Error Codes

284 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

807 ACF_RSP_BUILD_SEND_FAILED

Explanation: A message could not be built because the ASN.1 data sets are incorrect.

Action: Reload the ISTASN1 data set from the distribution media.

808 ACF_ERR_KILL_LOC_ASSOC

Explanation: The association is used to provide local (logical) connectivity to local Application Entities. They are
automatically established and terminated when Application entities are registered and terminated. These associations
do not represent any real network resources, so there is no reason to terminate them.

Action: Do not try to terminate these associations.

812 ACF_BAD_AE_TITLE_FORMAT

Explanation: The AE-Title provided as the value for CMIP services could not be encoded or processed by the
current set of ASN.1 definitions.

Action: Reload ISTASN1 from the distribution media.

814 ACF_CANNOT_FIND_INST

Explanation: The instance name provided with this message (in the baseManagedObjectInstance field of most CMIP
requests) cannot be resolved into a potential serving AE-Title, so CMIP services does not know where to send the
message.

Action: Possible actions include:

v Correct the instance name if it is incorrect.

v Add an entry to define a mapping for this name to AE-Title in the directory definition file and restart the platform.

v Add an explicit AE-Title as the destination of the request.

v Add an explicit association handle as the destination of the request.

815 ACF_NO_DESTINATION

Explanation: This error will be returned if a message does not include any of the following types of destination
information:

An association handle

An AE-Title

A DistinguishedName

An instance name in the CMIP message

The only way this should be possible is if the request is sent to ’GlobalRoot’ (an instance name with no RDNs) and no
other information is provided to direct the message to the correct system.

Action: Put some type of destination information in the message. If this CMIP message is trying to use ’GlobalRoot’,
you must provide one of the other types of destination. This is the only case where additional destination information is
required.

817 ACF_NO_ASSOC_TEMP

Explanation: The required association could not be established. There are several possible causes for this, each of
which will cause additional errors to be logged. The causes include:

There is no CMIP platform running on the designated target machine.

The address does not represent a real machine at all.

There is a CMIP platform running but its capabilities do not match those in use by this platform.

Action: Look for other trace entries to determine the real cause of the error.

Error Codes

Appendix C. Error Codes Sent by CMIP Services 285

819 ACF_EMPTY_DEF_LIST_RESULT

Explanation: While trying to negotiate a common set of syntaxes with a potential peer system we discovered that
the two systems have NO syntaxes in common. Since this will not result in any communication, we will not establish
the association. This should not ever happen if we are actually trying to connect to another system that implements
CMIP. It could happen if we mistakenly try to connect to an implementation of X.500 or X.400, so we really do not
want such an association to be established.

823 ACF_QUEUED_MESSAGE

Explanation: This should not occur in an error message. It may occur in a trace. This is the normal mode of
operation when a new association needs to be established.

824 ACF_ASSOC_ID_WRAP

Explanation: The identifiers assigned to associations have just wrapped. Unpredictable behavior may occur if there
are collisions. Collisions are extremely unlikely since they are assigned sequentially from a 32bit space. If they do
collide the platform will begin to route messages incorrectly.

Action: Restart CMIP services.

826 ACF_TOO_MANY_LOCAL_ASSOCS

Explanation: Local associations are limited to 100 at any given time.

Action: Possible actions:
v Terminate a local association.
v Terminate a local AE.

827 ACF_DUPLICATE_AE

Explanation: An attempt was made to register a local AE-Title for an object instance. This AE-Title is already in use
by another instance on this system.

Action: Change the AE-Title or terminate the previous object using this AE-Title.

828 ACF_REMOTE_AE

Explanation: An application program attempted to register a local AE-Title that is identical to the AE-Title currently
being used by a remote Application Entity.

Action: Choose a different AE-Title, or terminate the associations with the remote entity (and make sure it never
re-connects using the same AE-Title).

829 ACF_INVALID_STATE_TO_RELEASE

Explanation: An application program attempted to cause CMIP services to Release an association. When the
association was checked it was determined that it was not in the associated state. A Release message can only be
sent when an association is in the ASSOCIATED state without causing a protocol violation.

Action: If you really want to terminate the association, use an Abort instead of Release.

830 ACF_INVALID_AE

Explanation: An instance was attempting to register itself as the local DN handler for all messages that are received
on associations to a specific AE-Title. The AE-Title it specified is not one of those currently supported by the local
system, so it will never be used.

Action: Choose the correct AE-Title (possibly &AET) or register the AE-Title and retry the request.

Error Codes

286 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

831 ACF_BAD_P_MODE

Explanation: Only normal mode Presentation layer protocols are supported by CMIP services. The peer entity tried
to establish a connection using some other mode.

Action: Change the peer to use normal mode Presentation Layer protocols.

832 ACF_BAD_P_PROTOCOL_VERSION

Explanation: Only version 1 Presentation layer protocols are supported by CMIP services. The peer entity tried to
establish a connection using some other version.

Action: Change the peer to use version 1 Presentation Layer protocols.

833 ACF_BAD_CMIP_VERSION

Explanation: This implementation only supports version 2 of the CMIP protocol.

Action: Use CMIP version 2 for management flows. Change the peer to negotiate version 2 of CMIP.

834 ACF_BAD_APPL_CONTEXT

Explanation: CMIP services supports a specific set of application program contexts to assure the platform that the
peer is actually talking the same language. The supported contexts are:

ISO

CCITT

NM Forum

Action: Try to connect from CMIP services to the peer - maybe it will accept the ISO context (or the appropriate
CMOT context if using CMOT). Adapt the peer to support one of these protocols. Support for additional contexts
should not be necessary - these are all of the common contexts for OSI management. If additional contexts are
necessary, contact IBM Service

835 ACF_NO_APPL_CONTEXT

Explanation: The A-Associate indication received form a peer Application Entity did not include any application
program context. This does not allow us to confirm that it is actually using CMIP, or even how to resolve the details of
the A-Associate indication. This association will be rejected.

Action: Establish the association to the peer (maybe it will accept our context) or adapt the peer to send an
application program context CMIP services supports.

836 ACF_NO_APPL_INFO

Explanation: The platform received a P-Connect-Indication that contained no application program s layer
information. There was NO A-Associate-Indication contained in the PDU. Since this would not result in a usable
connection, the connection will be rejected.

Action: Establish the association to the peer (maybe it will accept our A-Associate) or adapt the peer to send an
A-Associate on the P-Connect.

838 ACF_WRONG_AE_TITLE

Explanation: The A-Associate-Indication provided a value for the called-AP-Title and qualifier that does not match
the local values. The A-Associate could be rejected, but it will be accepted. We will merely respond with the local AE
information in the responding AP-Title and responding AE-qualifier. The peer can abort the association if it sees fit.

Action: None - the association was established.

Error Codes

Appendix C. Error Codes Sent by CMIP Services 287

840 ACF_NO_AE_QUALIFIER

Explanation: This indicates (internally) that an A-Associate-Indication was received that contained only an AP-Title,
and no AE-Qualifier. The association will be accepted.

Action: No action is required unless this error code is externalized.

900 MB_ERR_PROCFAIL_NOT_OPTIONAL

Explanation: Although the parameter for an ROER-processingFailure is specified as OPTIONAL in the CMIP
standard, the argument for an ROIV-m-Linked-Reply is not OPTIONAL. Because CMIP services may need to reformat
an application’s processingFailure CMIP error from an ROER to an ROIV-m-Linked-Reply, CMIP services requires the
processingFailure argument to be specified.

Action: Correct the application program to specify a processingFailure argument in all cases. The following is an
example of a processingFailure argument that specifies the genericSpecificError: ″(&OC, (distinguishedName &DN),
(1.2.124.360501.9.24, NULL))″

901 MB_ERR_COMPXLIM_NOT_OPTIONAL

Explanation: Although the parameter for an ROER-complexityLimitation is specified as OPTIONAL in the CMIP
standard, the argument for an ROIV-m-Linked-Reply is not OPTIONAL. Because CMIP services may need to reformat
an application’s complexityLimitation CMIP error from an ROER to an ROIV-m-Linked-Reply, CMIP services requires
the complexityLimitation argument to be specified.

Action: Correct the application program to specify a complexityLimitation argument in all cases. The following is a
minimal example of a complexityLimitation argument which leaves out all the optional members: ″()″

903 MB_ERR_INVALID_TYPENAME

Explanation: An ASN.1 type name was not recognized.

Action: Correct the type name.

904 MB_ERR_NOT_CONNECTED

Explanation: A message was received from an application program that is no longer connected.

Action: Call the MIBConnect function.

914 MB_ERR_DELETE_PROTOCOL_ERROR

Explanation: Various rules limit the responses which an agent is allowed to make in the first phase of a CMIP
delete, when it send the MIB.DeleteResponse syntax to CMIP services. This error, returned to the agent application,
indicates that the response was not allowed. The reason depends on whether the instance is a subtree manager or
not and where the instance falls within the scope of the delete. This error is returned for six distinct conditions:

1. The instance is a subtree manager and is above the scope of the delete and has answered accepted (0).

2. The instance is a subtree manager and is above the scope of the delete and has answered rejected (1).

3. The instance is a subtree manager and is below the scope of the delete and has answered stmChildrenOnly (2).

4. The instance is not a subtree manager and has answered stmChildrenOnly (2).

5. The instance is below the scope of the delete and has answered noOneSelected (3).

6. The instance has not answered with 0, 1, 2, or 3.

Action: Correct the application program ’s delete-handling code. Note that if the object instance is not a subtree
manager (the normal case), then conditions 1-3 are eliminated as possible causes. Also note that condition 4 does not
specify where the instance is relative to the scope of the delete because non-subtree manager instances are never
allowed to answer stmChildrenOnly. Condition 5 is an error because the filter for the delete is always stripped from the
delete indication before it is delivered to the instances which are below the scope of the delete. Because these
instances did not receive the filter, they cannot possibly have failed to pass it.

Error Codes

288 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

918 MB_ERR_INVALID_LINK_ID

Explanation: The value specified on the link identifier parameter does not refer to a valid connection.

919 MB_ERR_INVALID_STATE

Explanation: CMIP services was attempting to write a message to a client application program but determined that
the connection was not in a useable state. The message was not written, and the error was logged. The application
program program was not notified of the error nor was the sender of the request.

Action: The application program should exit and reinitialize.

920 MB_ERR_NOT_REGISTERED

Explanation: The application program has indicated that it has had an unrecoverable error when returning to the
read queue exit routine or the data space is out of storage. The registration will not be allowed.

921 MB_ERR_CMIP_ERR_RESP_ILLEGAL

Explanation: An agent application program attempted to return a CMIP error and CMIP services flagged the
response as illegal because the error code specified in the response is not allowed for indications of the type being
responded to. For example, if an client agent application program returns a getListError for an m-Set indication or an
invalidArgumentValue error for a an m-Create. This error is also returned by CMIP services when an agent responds
to a delete with the syntax MIB.DeleteResponse(1, X, ...) where the X is an error code that is not allowed by the CMIP
standard in response to an m-Delete indication.

Action: Correct the client agent application program to return an error code compliant with the CMIP standard (Rec.
X.711 | ISO/IEC 9596-1 second edition).

922 MB_ERR_CMIP_ERR_RESP_STKCHK

Explanation: An agent application program attempted to return a CMIP error and CMIP services flagged the
response as illegal because the error code specified in the response was checked for by CMIP services when the
indication was processed and was verified at that time not to have occurred. For example, all object classes are
looked up and found in the metadata before the indication is delivered, so the NoSuchObjectClass error cannot occur
subsequently. If an application program attempts to return NoSuchObjectClass, CMIP services rejects the response
with this error code. The other errors which fall into this category are SyncNotSupported and InvalidScope. CMIP
services returns an ROER to all indications that specify a sych other than bestEffort and client agent application
program s will never receive an indication that specifies atomic synchronization. Also all scopes are validated to be
completely syntactically correct before the indication is delivered to the agent application. So these errors are not
allowed by CMIP services. If an agent application program generates these errors, then the agent application program
is in error.

Action: A program ming error exists in the client agent application. Correct the application program to send the CMIP
error that actually occurred.

925 MB_ERR_LOST_CONNECTION

Explanation: The application program has exited.

Action: It should reconnect.

929 MB_ERR_LOCAL_ID_ALREADY_REGISTERED

Explanation: The local identifier is not unique.

Action: Correct the client application program to pass a unique local identifier with each MIBSendRegister API
function call.

Error Codes

Appendix C. Error Codes Sent by CMIP Services 289

931 MB_ERR_SOURCE_NOT_IN_SUBTREE

Explanation: Only instances registered with the SUBTREE_MANAGER or EVENT_HANDLER capabilities are
permitted to use the source override feature on requests and responses. For the EVENT_HANDLER application
program (there may be only one), any distinguished name may be specified as the source, with no restrictions. But for
subtree manager application program s, there is a restriction placed on the distinguished names which may be
specified. The restriction is that the distinguished name must be within the subtree managed by the subtree manager,
i.e. the distinguished name specified as the source must have the distinguished name of the subtree as a prefix. This
error is returned when a subtree manager specifies a source outside its managed subtree.

Action: A programming error exists in the subtree manager application program. Correct the subtree manager
application program.

932 MB_ERR_MAX_OUTSTANDING

Explanation: There are no remaining, unused invoke identifiers on this connection.

Action: Increase the value of the max outstanding invoke identifiers parameter passed to the MIBConnect function.

933 MB_ERR_CMIP_ERR_NOT_STM

Explanation: A client agent application program returned a CMIP error as its response to an indication. In checking
CMIP error responses, CMIP services takes several pieces of information into account. One of them is the
operation-type for the indication (e.g. m-Get, m-Action, etc). Another is the client agent’s capabilities, specifically
whether the instance responding had the SUBTREE_MANAGER capability set when it was registered. This error is
returned to the agent by CMIP services because CMIP services only allows the given CMIP error to be returned by
subtree manager agents. This is because the given error is checked for by CMIP services before the indication is
delivered to the client agent application. Except in the case of subtree managers, CMIP services has already verified
that the error did not occur. Since the agent is not a subtree manager, the agent should not be allowed to return this
error, since it could not have occurred. Had the agent been a subtree manager the error response would have been
allowed, because in that case CMIP services could not have verified ahead of time that the error did not occur. It
should not be inferred from this discussion that the solution is to make the client agent a subtree manager. Instead, it
should be assumed that the client incorrectly detected the error condition signaled by the response, and that the
client’s response is in error.

Action: Correct the client agent application program to return a valid CMIP response or an allowed CMIP error
response.

934 MB_ERR_NOT_SUBTREE_MGR

Explanation: In a CMIP message, the information which determines the source of the message comes from three
places. The CMIP string may specify the distinguished name of the instance sending the request or response. Or, the
string may include the ″&DN″. macro. This is replaced by CMIP services with the distinguished name of the instance
sending the message as identified by the local identifier supplied on the API call. Finally, a subtree manager instance
is allowed to use the ″&DN″ macro and specify a source-override. This results in the distinguished name supplied on
the override being substituted for the &DN rather than the DN of the subtree manager. This error indicates that the
client application program specified a non-null value for the source parameter on a request or response
(MIBSendResponse, MIBSendCmipRequest, MIBCmipRequest, MIBSendCmipResponse, or MIBCmipResponse) but
the managed object instance sending the request or response is not a subtree manager.

Action: Correct the client application. If the application program has been designed and coded to fulfill all the
responsibilities of a subtree manager, then enable the SUBTREE MANAGER on the instance’s MIBRegister call.
Otherwise, do not specify the source parameter on the API function call.

935 MB_ERR_DIDNT_USE_AMPER_IID

Explanation: An incorrect invoke identifier was used in a CMIP request.

Action: Use the &IID MIB variable to include the new invoke identifier for this request.

Error Codes

290 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

936 MB_ERR_CMIP_ERR_NOTASROIV

Explanation: An agent application program attempted to return a response containing a CMIP error. The response is
allowed given the operation value of the request, but CMIP services only supports sending the CMIP error as an
ROER, not as an m-Linked-Reply. This error indicates that in order to deliver the message, the response would have
had to be reformatted as an m-Linked-Reply. Since CMIP services supports sending all errors as linked replies that
can legitimately be returned as linked replies, this error indicates that the error should not have been sent as a not-last
response.

Action: Correct the client agent application program to return the error as a final response.

937 MB_ERR_INVALID_MSG_FORMAT

Explanation: This error is returned when CMIP services cannot parse the module and type or the top-level sequence
of a request or response. Incorrect values in the invoke identifier, operation-value, argument or argument-type labels
can cause this error. Incorrect values in the module and type strings also cause this error.

Action: Correct the string.

938 MB_ERR_EMPTY_ROIV_INVALID

Explanation: CMIP services was processing a client agent response and needed to reformat the response into an
ROIVapdu for transmission as an m-LinkedReply. But the client agent application program did not provide an argument
on the response, so the response cannot be formatted as an ROIV-m-LinkedReply. Because of the possibility of this
failure, and the fact that agent application programs cannot predict whether the reformatting will be required, it is
required that an argument be provided on all responses. This error is only checked when the argument is actually
required, so it may appear to be an intermittent problem to the client agent, nevertheless, it is actually a consistent
problem.

Action: Determine which API function call was used to send the response and correct the client agent application
program to provide an argument on the response in all cases.

939 MB_ERR_INVALID_RESP

Explanation: There are several checks which CMIP services makes to validate an object instance’s response. The
object instance supplies an invokeId, a destination (in the form of an association handle), and a response string. This
error can indicate a number of different failures which all have in common that the response was invalid because that
instance was not allowed to respond to the specified request at the current time. The possible failures are:

v The invoke identifier and association handle did not specify a valid indication (i.e. no instance is allowed to respond
to the ″request″, because it doesn’t exist).

v The invoke identifier and association handle specify a valid indication, but the object instance responding is not
allowed to respond to that indication because it was not a recipient of the indication.

v The invoke identifier and association handle specify a valid indication, but the object instance responding is not
allowed to respond to that indication because it has already responded to that indication with a ″final″ response.

v The invoke identifier and associate handle specify a valid delete indication to which the object instance is allowed to
respond, but the instance responded ″out of phase″, either sending a phase-1 response during phase 2 or vice
versa.

v When CMIP services discovers that a manager application program has terminated, CMIP services removes all
indications from that manager from its log. Otherwise valid agent responses to the indication are rejected with this
return code. This is the only case where the client agent application program is not at fault. One possible cause for
this error (in cases 2 and 3) is that the client agent application program specified the wrong local identifier on the
response.

Action: Determine if the manager application program which issued the request terminated before the agent
responded (see case 5 above). If so, then this error may be ignored. Otherwise correct the client agent application
program to respond correctly.

Error Codes

Appendix C. Error Codes Sent by CMIP Services 291

941 MB_ERR_CANCELGET_RESP_INVALID

Explanation: CMIP services application program makes supporting the cancel get operation trivial for agents to
implement by treating it as an unconfirmed request from the agent’s viewpoint. Whenever CMIP services receives an
m-CancelGet it takes care of cancelling the get and responding to the m-CancelGet and sending the
operationCancelled ROER. Agents may either continue to respond to the get as if the cancel get had not been
received (and CMIP services discards these responses) or agents may abort their get and send an operationCancelled
error. Because of this design, agents are not allowed to respond to the m-CancelGet indication, and they receive this
error if they do.

Action: Correct the client agent application program to not respond to m-CancelGet indications.

945 MB_ERR_CONNECT

Explanation: The MIBConnect was not successful. If the error condition indicated by the OPEN ACB error value
parameter can be eliminated, another MIBConnect can be issued.

952 HDR_SYNTAX_ERROR

Explanation: The module and type information that must accompany all messages is wrong. The value provided
either does not contain both a module and type name, separated by a period.

Action: Fix the type reference to be complete. A valid example is: CMIP-1.ROIVapdu.

953 INVALID_HDR_DEST_TYPE

Explanation: The type of the destination (the value for dest-type) contained in the string header is invalid. The only
allowed types are:
v 0: none provided
v 1: association handle
v 2: Distinguished name of an instance
v 3: AE-title of a peer system

Action: Fix the dest-type in the string header.

954 INVALID_HDR_SRC_TYPE

Explanation: The type of the source (the value for src-type) contained in the string header is invalid. The only
allowed types are:

v 0: none provided

v 1: association handle

v 2: Distinguished name of the sending instance

Normally you should be doing one of two things. If this message is a response, the src-type MUST BE 1 - association
handle. If this message is a request, the type should normally be 0. The only time any other value is used is when the
request is coming from a specific instance and you need to provide its name for us to resolve an &DN MIB variable.

Action: Fix the src-type in the string header.

955 UNRECOGNIZED_HDR_LABEL

Explanation: A label was encountered in the string header that was unrecognized or out of sequence.

Action: If the message was sent using MIBSendRequest or MIBSendResponse, fix the string to align with the
definition of the string header contained in ISTASN1. If the message was sent by CMIP services, or using
MIBSendCmipRequest or MIBSendCmipResponse, call IBM Service.

956 KEY_IS_NULL

Explanation: While parsing the string an & was encountered. The valid MIB variables are &IID, &OC, &DN, and
>M.

Error Codes

292 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Action: Fix the value to reference a valid MIB variable or avoid the use of a MIB variable or surround the value in
quotation marks.

957 KEY_NOT_FOUND

Explanation: While parsing the string a MIB variable (a value which begins with the character ’&’) was encountered
for which does not exist. The allowed values are &IID, &OC, &DN, and >M.

Action: Fix the value to refer to a valid MIB variable or avoid the use of a MIB variable or surround the value in
quotation marks.

958 MIB_VAR_NOT_LOADED

Explanation: An invalid MIB variable was encountered.

Action: Correct the use of the MIB variable to be one of those defined, or use a real value. If you want the value to
be a string that begins with &, you must surround the value in quotes.

961 LABV_END_QUOTE_NOT_FOUND

Explanation: A string was found that began with a quote (single or double) for which there was no closing quote.

Action: Fix the string value to conform to the rules for construction of string values.

962 LABV_NULL_VALUE

Explanation: CMIP services was provided with an input string that did not include a value. This is a warning that
there was not a value in the string being processed.

Action: This may be working correctly, assuming the input string intended did not include a value. This is unlikely
since normally it is only necessary to parse strings that contain values. Change the string to be a valid value for an
ASN.1 syntax.

963 LABV_INVALID_CHAR_IN_VALUE

Explanation: An invalid character was found in a value in the string being parsed.

Action: Fix the string value to conform to the rules for construction of string values.

964 LABV_INVALID_GROUP_DELIMITER

Explanation: The only characters that are allowed to follow a right parenthesis in a string are comma and right
parenthesis. Something else was encountered.

Action: Fix the string value to conform to the rules for construction of string values.

965 LABV_EMPTY_STRING

Explanation: CMIP services was handed a string with no contents. It did not return any labels or values.

Action: None; you have reached the end of the string. Processing for the string should now terminate. This is
working as designed.

1000 MB_WARN_DATA_SPACE_FULL

Explanation: If using a data space and the data space is out of storage, this warning is returned to remind the
application program that no messages will be returned to this application program. This message will still be routed to
CMIP services.

Action: Remove messages from the data space.

Error Codes

Appendix C. Error Codes Sent by CMIP Services 293

1001 MB_WARN_EXIT_FAILURE

Explanation: If using common storage area storage and the application program has indicated that it has had an
unrecoverable error when returning to the read queue exit routine, this warning is returned to remind the application
program that no messages will be returned to the application program. This message will still be routed to CMIP
services.

Action: The application program should disconnect and connect again.

1002 MB_DATA_ON_DATA_SPACE

Explanation: CMIP services has placed one or more messages in the data space.

Action: Remove messages from the data space.

1004 MB_ERR_INVALID_ARGUMENT

Explanation: The argument parameter was not provided.

Action: Correct the argument.

1005 MB_ERR_INVALID_ARGUMENT_TYPE

Explanation: An incorrect argument type parameter was provided.

Action: Correct the argument type.

1006 MB_ERR_INVALID_ASSOC_HANDLE

Explanation: An incorrect association handle parameter was provided.

Action: Correct the association handle.

1007 MB_ERR_INVALID_SMAE_NAME

Explanation: The value specified for the SMAE name buffer parameter is not valid.

Action: Correct the SMAE name.

1008 MB_ERR_CMIP_SERVICES_INACTIVE

Explanation: CMIP services is inactive.

If using common storage area storage, the read queue exit routine stops functioning.

If using data space storage, messages are not put on the data space.

Action: Start CMIP services.

1009 MB_ERR_INVALID_DS_VECTOR

Explanation: The value specified for the data space vector length parameter is valid, but the data space vector
parameter is not provided.

Action: Correct the parameters.

1010 MB_ERR_INVALID_DEST_TYPE

Explanation: An incorrect destination type parameter was passed.

Action: Correct the parameter.

Error Codes

294 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

1011 MB_ERR_INVALID_DIST_NAME

Explanation: An incorrect distinguished name was provided.

Action: Correct the parameter.

1012 MB_ERR_INVALID_MAX_INVOKE_IDS

Explanation: The value specified for the maximum outstanding requests parameter is not valid.

Action: Correct the parameter.

1013 MB_ERR_INVALID_API_LEVEL

Explanation: An incorrect value for the API level parameter was passed.

Action: Correct the parameter.

1014 MB_ERR_INVALID_APPL_NAME

Explanation: The value specified for the application name parameter is longer than 8 characters.

Action: Correct the parameter.

1015 MB_ERR_INVALID_DS_VECTOR_SIZE

Explanation: If the data space vector parameter is specified, the data space vector length must be at least the size
of (ISTRIV10_t), which is the length of the data space vector.

Action: Correct the parameter.

1016 MB_ERR_INVALID_SMAE_NAME_SIZE

Explanation: The buffer sent to the MIBConnect function is too small to accommodate the name of the SMAE. The
actual amount of storage required is returned in the SMAE name length parameter.

Action: Correct the parameter.

1017 MB_ERR_INVALID_INVOKE_ID

Explanation: The invoke identifier parameter was not provided.

Action: Correct the parameter.

1018 MB_ERR_MIBDISCONNECT

Explanation: The MIBDisconnect function was not successful.

Action: If the error condition indicated by the CLOSE ACB error value parameter can be eliminated, another
MIBDisconnect can be issued.

1019 MB_ERR_INVALID_MSG

Explanation: An incorrect message parameter was provided.

Action: Correct the parameter.

1020 MB_ERR_INVALID_OBJECT_CLASS

Explanation: An incorrect object class parameter was provided.

Action: Correct the parameter.

Error Codes

Appendix C. Error Codes Sent by CMIP Services 295

1021 MB_ERR_INVALID_READ_QUEUE_EXIT

Explanation: The read queue exit routine was not provided.

Action: Correct the parameter.

1022 MB_ERR_INVALID_SYSTEM_NAME_SIZE

Explanation: The buffer sent to the MIBConnect function is too small to accommodate the name of the system
object. The actual amount of storage required is returned in the system object name buffer size parameter.

Action: Increase the buffer size.

1023 MB_ERR_INVALID_LOCAL_ID_SIZE

Explanation: The value specified on the local identifier length parameter is outside the acceptable range of 1—8.

Action: Increase the buffer size.

1024 MB_ERR_TRANSMIT

Explanation: An apparent error occurred. Either there is a logic error in VTAM, or the MIBDisconnect function has
been issued, but it has not completed.

Action: Do not use any other services once MIBDisconnect has been issued.

1025 MB_ERR_VTAM_INACTIVE

Explanation: VTAM is inactive.

Action: Start VTAM.

1026 MB_ERR_INVALID_USER_DATA

Explanation: The user data parameter was not provided.

Action: Increase the buffer size.

1027 MB_ERR_INVALID_ERROR_FLAG

Explanation: The CLOSE ACB error value parameter does not point to a valid storage location.

Action: Correct the parameter.

1028 MB_ERR_INVALID_RELEASE_LEVEL

Explanation: The value specified for the VTAM release level parameter is not valid.

Action: Correct the parameter.

1029 MB_ERR_INVALID_PASSWORD

Explanation: The value specified for the password parameter is not between 0 and 8 characters.

Action: Correct the parameter.

1030 MB_ERR_INVALID_CAPABILITY_FLAGS

Explanation: The value specified for the capability flags parameter is not valid.

Action: Correct the parameter.

Error Codes

296 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

1031 MB_ERR_INVALID_TPEND_EXIT

Explanation: The TPEND exit routine is not valid.

Action: Correct the parameter.

1032 MB_ERR_INVALID_LAST_IN_CHAIN_FLAG

Explanation: An incorrect last in chain parameter was provided.

Action: Correct the parameter.

1033 MB_ERR_INVALID_SUCCESS_FLAG

Explanation: An incorrect success parameter was provided.

Action: Correct the parameter.

1034 MB_ERR_INVALID_SYSTEM_NAME

Explanation: The value specified for the system object name buffer parameter is not valid.

Action: Correct the parameter.

1035 MB_ERR_INVALID_CONNECT_OPTIONS

Explanation: The value specified on the connection options parameter is not valid. Specify either
NO_CONNECT_OPTIONS or SHORT_NAMES as the value for the connection options parameter.

Action: Correct the parameter.

1036 MB_ERR_INVALID_NAME_TYPE

Explanation: An incorrect name type parameter was provided.

Action: Correct the parameter.

1037 MB_ERR_INVALID_NAME_BINDING

Explanation: An incorrect name binding parameter was provided.

Action: Correct the parameter.

1038 MB_ERR_INVALID_ALLOMORPHS_COUNT

Explanation: An incorrect allomorphs count parameter was provided.

Action: Correct the parameter.

1039 MB_ERR_INVALID_ALLOMORPHS_ARRAY

Explanation: An incorrect allomorphs array parameter was provided.

Action: Correct the parameter.

1040 MB_ERR_INVALID_CREATE_HANDLERS_COUNT

Explanation: An incorrect create handlers count parameter was provided.

Action: Correct the parameter.

Error Codes

Appendix C. Error Codes Sent by CMIP Services 297

1041 MB_ERR_INVALID_CREATE_HANDLERS_ARRAY

Explanation: An incorrect create handlers array parameter was provided.

Action: Correct the parameter.

1042 MB_ERR_INVALID_LOCAL_ID

Explanation: An incorrect local identifier parameter was provided.

Action: Correct the parameter.

1043 MB_ERR_INVALID_DEST

Explanation: The value of the destination parameter is inconsistent with the value of the destination type parameter.
This return code is returned if, for example, destination type is DS_ASSOC_HANDLE, but destination is NULL.

Action: Correct the parameter.

CMER VIT Entry Error Codes
These error codes can appear only in CMER VIT entries.

151

Explanation: An invalid parameter was received.

Action: No action is required. Other errors logged in CMER VIT entries or sent to an application program may
indicate the cause of the problem.

153

Explanation: An error was encountered by notification services.

Action: No action is required. Other errors logged in CMER VIT entries or sent to an application program may
indicate the cause of the problem.

156

Explanation: A CMIP services dataset could not be opened.

Action: Check the VTAM JCL to ensure that required DD cards are present and point to the correct datasets. Check
the datasets to verify the presence of the required members. Then restart CMIP Services using the MODIFY
VTAMOPTS,OSIMGMT=YES command.

157

Explanation: A CMIP services dataset contains incorrect data.

Action: Reload the CMIP services datasets to ensure that the datasets are not corrupted. Then restart CMIP
Services using the MODIFY VTAMOPTS,OSIMGMT=YES command.

158

Explanation: The directory definition file contained a syntax error.

Action: Correct the directory definition file and restart CMIP services.

159

Explanation: The name attribute in the directory definition file was invalid.

Action: Correct the directory definition file and restart CMIP services.

Error Codes

298 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

161

Explanation: The name attribute in the directory definition file was missing.

Action: Correct the directory definition file and restart CMIP services.

162

Explanation: An attribute in the directory definition file was listed more than once in the same entry.

Action: Correct the directory definition file and restart CMIP services.

166

Explanation: The class attribute in the directory definition file was invalid.

Action: Correct the directory definition file and restart CMIP services.

167

Explanation: A generic error occurred. Other error codes should be traced or returned to the user in a
MIB.ServiceError message.

Action: No action is required. Other errors logged in CMER VIT entries or sent to an application program may
indicate the cause of the problem.

168

Explanation: The class attribute in the directory definition file was missing.

Action: Correct the directory definition file and restart CMIP services.

174

Explanation: A CMIP services dataset contains incorrect data.

Action: Reload the CMIP services datasets to ensure that the datasets are not corrupted. Then restart CMIP
Services using the MODIFY VTAMOPTS,OSIMGMT=YES command.

1051

Explanation: An EFD filter contained too many object classes to be recognized for topology agent processing. VTAM
topology agent will not generate notifications for this EFD if the OSIEVENT start option is set to PATTERNS.

Action: If the OSIEVENT start option is set to PATTERNS and the EFD which led to this warning is meant to collect
information from VTAM topology agent, then the filter in the EFD must be rewritten to refer only to objects of a single
class.

1052

Explanation: An EFD filter contained too many distinguished names to be recognized for topology agent processing.
VTAM topology agent will not generate notifications for this EFD if the OSIEVENT start option is set to PATTERNS.

Action: If the OSIEVENT start option is set to PATTERNS and the EFD which led to this warning is meant to collect
information from VTAM topology agent, then the filter in the EFD must be rewritten to refer only to a single DN.

1053

Explanation: An EFD filter contained a resource name which was too long. VTAM topology agent will not generate
notifications for this EFD if the OSIEVENT start option is set to patterns.

Action: If the OSIEVENT start option is set to PATTERNS and the EFD which led to this warning is meant to collect
information from VTAM topology agent, then the filter in the EFD must be rewritten to correct the object names.

Error Codes

Appendix C. Error Codes Sent by CMIP Services 299

1054

Explanation: An EFD destination was incorrect. The EFD will not be created.

Action: The specified destination attribute is invalid and must be changed. The destination of an EFD should be an
AE registered by the application program.

1055

Explanation: An EFD filter contained an object class which was not recognized for topology agent processing. VTAM
topology agent will not generate notifications for this EFD if the OSIEVENT start option is set to PATTERNS.

Action: If the OSIEVENT start option is set to PATTERNS and the EFD which led to this warning is meant to collect
information from VTAM topology agent, then the filter in the EFD must be rewritten to specify a support object class.

1056

Explanation: An EFD filter was not recognized for topology agent processing. VTAM topology agent will not generate
notifications for this EFD if the OSIEVENT start option is set to PATTERNS.

Action: If the OSIEVENT start option is set to PATTERNS and the EFD which led to this warning is meant to collect
information from VTAM topology agent, then the filter in the EFD must be rewritten to follow a recognizable pattern.

1057

Explanation: An EFD filter was recognized as having nothing to do with VTAM topology. VTAM topology agent will
not generate notifications for this EFD regardless of the setting of the OSIEVENT start option.

Action: If the EFD which led to this warning is meant to collect information from VTAM topology agent, then the filter
in the EFD must be rewritten, as it seems to have nothing to do with VTAM topology.

Error Codes

300 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Appendix D. VTAM CMIP Services Compliance with Related
Standards and Profiles

This section is designed to help you understand how VTAM CMIP services complies
to the standards related to OSI systems management.

VTAM CMIP services implements functions that are defined in International
Standards Organization (ISO) standards documents and industry profiles.

ISO Standards Documents
This section indicates how VTAM CMIP services conforms to several ISO standards
related to OSI systems management.

ISO 9596-1 CMIP—Common Management Information Protocol
VTAM CMIP services implements all functional units specified for CMIP Version 2 in
this standard. Atomic synchronization is not supported.

(ISO 10164-5) OSI Systems Management Part 5: Event Report Function
VTAM CMIP services implements the event forwarding discriminator (EFD)
described in this standard. All of the object management functions specified for the
EFD are supported (GET, SET, CREATE, DELETE). VTAM CMIP services supports
general discriminator constructs of any complexity. VTAM CMIP services does not
support any of the conditional packages defined for the class or substring
operations on SET valued attributes.

ISO 8650 ACSE—Association Control Service Element
VTAM CMIP services implements all required aspects of the protocol specified as
ACSE Version 1 in this standard. VTAM CMIP services accepts all elements of
protocol specified, but only a specific set of parameters are actually used.

ISO 8823 Presentation Layer
VTAM CMIP services implements all required aspects of the presentation layer
protocol used for establishing and releasing connections. VTAM CMIP services also
implements the encoding and decoding function specified. It supports a single
transfer syntax, basic encoding rules (BER). Any other transfer syntaxes are
rejected. If the partner does not support BER for an abstract syntax, an association
cannot be established.

ISO 8825 BER—Basic Encoding Rules (BER)
VTAM CMIP services supports encoding and decoding of all of the ASN.1 types
using the basic encoding rules. Some of the types are supported to a limited extent,
specifically:

v Integers are encoded and decoded only up to the size supported by the machine
in a native format. When any larger integers are received, they are left in the
BER form, and passed to the user in the BER form.

v Only the default code page is supported for GraphicString.

© Copyright IBM Corp. 1995, 2001 301

ISO Standards Documents
This section indicates how VTAM CMIP services conforms to several industry
profiles governing the implementation of ISO standards. These profiles are defined
to allow interoperation between different implementations of the standards. Each
covers a specific set of standards and specifies the set of mandatory and optional
elements of those standards. Each profile specifies value ranges, message sizes,
and so on, that ensure a common implementation base.

DISP 11183-1, AOM 10
This profile governs the implementation of the ACSE, presentation layer, session
layer for use with Remote Operation Service Element (ROSE) and Common
Management Interface Service Element (CMISE).

VTAM CMIP services implements the relevant portions of this profile. All required
elements of protocol are supported.

DISP 11183-3, AOM 12
This profile governs the implementation of the CMISE.

VTAM CMIP services implements the relevant portions of this profile.

AOM221—General Event Report Management
This profile governs the implementation of the event forwarding discriminator object
class, which VTAM CMIP services supports.

This profile specifies a minimum set of attributes that must be permitted to appear
in discriminator constructs and the minimum levels of complexity that must be
supported.

VTAM CMIP services complies; VTAM CMIP services allows any level of complexity
and supports any set of events (GDMO NOTIFICATION templates and the
associated attribute templates) with which it is loaded.

The profile also requires support for all matching rules that can be specified in the
discriminator construct. VTAM CMIP services does not support the SET operations:
subset, superset, and non-null-set-intersection.

The profile also requires support for two non-mandatory packages: weekly
scheduling and backup destinations. VTAM CMIP services supports neither.

This profile does not require support for confirmed mode conditional, which VTAM
CMIP services does not support.

Standards Compliance

302 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Appendix E. VTAM Topology Agent Object and Attribute
Tables

VTAM-Supported Objects for snapshot Operations
The set of objects VTAM supports for snapshot operations is presented in the
following table.

Table 22. Supported Object Classes for snapshot

Object Identifier Object Name

1.3.18.0.0.1811 luCollection

1.3.18.0.0.2291 logicalUnitIndex

1.3.18.0.0.2152 snaLocalTopo

1.3.18.0.0.2151 snaNetwork

Naming Attributes for snapshot Objects
Naming attributes for snapshot objects are presented in the following table.

Table 23. Naming Attributes for snapshot Objects

Attribute Identifier Attribute Name Object Name

1.3.18.0.0.2216 graphId snaLocalTopo

1.3.18.0.0.2216 graphId snaNetwork

1.3.18.0.0.1815 luCollectionId luCollection

1.3.18.0.0.1815 logicalUnitIndexName logicalUnitIndex

VTAM-Supported Objects for snapshot Responses
The set of objects VTAM supports for the snapshot operation responses includes all
valid objects for a GET or snapshot request and the objects in the following table.

Table 24. Unique Objects for snapshot Response

Object Identifier Object Name snapshot Type

1.3.18.0.0.2278 crossDomainResourceManagersnaNetwork

1.3.18.0.0.1848 virtualRoute snaNetwork

1.3.18.0.0.1849 virtualRoutingNode snaNetwork, snaLocalTopo

1.3.18.0.0.1840 subareaTransmissionGroup snaLocalTopo

1.3.18.0.0.1823 appnTransmissionGroup snaNetwork, snaLocalTopo

VTAM-Supported Attributes for snapshot Responses
The set of attributes VTAM supports for the snapshot operation responses includes
all valid attributes for GET operations and the attributes in the following table.

Table 25. Unique Attributes for snapshot Response

Attribute Identifier Attribute Name snapshot Type

1.3.18.0.0.5246 realSSCPname snaNetwork

© Copyright IBM Corp. 1995, 2001 303

Table 25. Unique Attributes for snapshot Response (continued)

Attribute Identifier Attribute Name snapshot Type

1.3.18.0.0.1958 cp-cpSessionSupport snaNetwork, snaLocalTopo

1.3.18.0.0.1941 appnTGcapabilities snaNetwork, snaLocalTopo

VTAM-Supported Objects for GET Operation
The set of objects VTAM supports for the GET operation is presented in the
following table.

Table 26. Supported Object Classes for GET

Object Identifier Object Name

1.3.18.0.0.2281 crossDomainResource

1.3.18.0.0.2267 definitionGroup

1.3.18.0.0.1821 appnEN

1.3.18.0.0.1826 interchangeNode

1.3.18.0.0.1827 lenNode

1.3.18.0.0.2085 logicalLink

1.3.18.0.0.1829 logicalUnit

1.3.18.0.0.1803 luGroup

1.3.18.0.0.1833 migrationDataHost

1.3.18.0.0.1822 appnNN

1.3.18.0.0.2089 port

1.3.18.0.0.2288 appnRegisteredLu

1.3.18.0.0.1843 t2-1Node

1.3.18.0.0.1844 t4Node

1.3.18.0.0.1845 t5Node

VTAM-Supported Attributes for GET Operation
The set of mandatory attributes supported for the GET operation for a given object
is presented in the following tables. There is one table per supported object class
for the GET operation.

Table 27. CDRSC Attribute Table

Attribute Identifier Attribute Name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

2.9.3.2.7.33 availabilityStatus

1.3.18.0.0.3591 cdrscRealLUname

1.3.18.0.0.2194 dependencies

1.2.124.360501.1.240 functionID

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

1.3.18.0.0.2284 nlrResidentNodePointer (naming attribute)

Object and Attribute Tables

304 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Table 27. CDRSC Attribute Table (continued)

Attribute Identifier Attribute Name

1.3.18.0.0.2276 nonLocalResourceName

1.3.18.0.0.2277 nonLocalResourceType

2.9.3.2.7.65 objectClass

2.9.3.2.7.35 operationalState

1.3.14.2.2.4.35 opNetworkName

2.9.3.2.7.66 packages

2.9.3.2.7.36 proceduralStatus

1.2.124.360501.1.302 supportedResources

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

0.0.13.3100.0.7.50 userLabel

Table 28. Definition Group Attribute Table

Attribute Identifier Attribute Name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.33 availabilityStatus

2.9.3.2.7.50 allomorphs

1.3.18.0.0.2272 definitionGroupName (naming attribute)

1.3.18.0.0.2194 dependencies

1.2.124.360501.1.240 functionID

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

2.9.3.2.7.65 objectClass

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

1.2.124.360501.1.302 supportedResources

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

Table 29. APPN End Node Attribute Table

Attribute Identifier Attribute Name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

1.2.124.360501.1.209 attachedCircuitList

2.9.3.2.7.33 availabilityStatus

1.3.18.0.0.2194 dependencies

1.2.124.360501.1.240 functionID

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

1.3.18.0.0.1997 nnServerPointer

Object and Attribute Tables

Appendix E. VTAM Topology Agent Object and Attribute Tables 305

Table 29. APPN End Node Attribute Table (continued)

Attribute Identifier Attribute Name

2.9.3.2.7.65 objectClass

1.3.14.2.2.4.33 opEquipmentList

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

2.9.3.2.7.36 proceduralStatus

1.3.18.0.0.2032 snaNodeName (naming attribute)

1.3.14.2.2.4.53 softwareList

1.2.124.360501.1.302 supportedResources

1.3.18.0.0.2296 sysplexInfo

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

Table 30. Interchange Node Attribute Table

Attribute Identifier Attribute Name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

1.3.18.0.0.1940 appnNodeCapabilities

1.2.124.360501.1.209 attachedCircuitList

2.9.3.2.7.33 availabilityStatus

1.3.18.0.0.2194 dependencies

1.3.18.0.0.2025 dlurList

1.3.18.0.0.1967 erList

1.3.18.0.0.1970 extendedAppnNodeCapabilities

1.2.124.360501.1.240 functionID

1.3.18.0.0.1972 gatewaySSCP

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

2.9.3.2.7.65 objectClass

1.3.14.2.2.4.33 opEquipmentList

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

2.9.3.2.7.36 proceduralStatus

1.3.18.0.0.2013 puName

1.3.18.0.0.2019 resourceSequenceNumber

1.3.18.0.0.2020 routeAdditionResistance

1.3.18.0.0.2032 snaNodeName (naming attribute)

1.3.14.2.2.4.53 softwareList

1.3.18.0.0.2035 subareaAddress

1.3.18.0.0.2036 subareaLimit

1.2.124.360501.1.302 supportedResources

Object and Attribute Tables

306 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Table 30. Interchange Node Attribute Table (continued)

Attribute Identifier Attribute Name

1.3.18.0.0.2296 sysplexInfo

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

Table 31. Low-Entry Networking Node Attribute Table

Attribute Identifier Attribute Name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

1.2.124.360501.1.209 attachedCircuitList

2.9.3.2.7.33 availabilityStatus

1.3.18.0.0.2194 dependencies

1.2.124.360501.1.240 functionID

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

2.9.3.2.7.65 objectClass

1.3.14.2.2.4.33 opEquipmentList

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

2.9.3.2.7.36 proceduralStatus

1.3.18.0.0.2032 snaNodeName (naming attribute)

1.3.14.2.2.4.53 softwareList

1.2.124.360501.1.302 supportedResources

1.3.18.0.0.2296 sysplexInfo

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

Table 32. Logical Link Attribute Table

Attribute Identifier Attribute Name

1.3.18.0.0.2119 adjacentLinkStationAddress

1.3.18.0.0.2122 adjacentNodeName

1.3.18.0.0.2121 adjacentNodeType

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

2.9.3.2.7.33 availabilityStatus

2.9.3.5.7.1 connectionID

1.3.18.0.0.2125 connectionType

1.3.18.0.0.2194 dependencies

1.3.18.0.0.7899 dlurLocalLsAddress

1.3.18.0.0.2309 dlurName

1.3.18.0.0.2235 endpointForArc

Object and Attribute Tables

Appendix E. VTAM Topology Agent Object and Attribute Tables 307

Table 32. Logical Link Attribute Table (continued)

Attribute Identifier Attribute Name

1.2.124.360501.1.240 functionID

1.3.18.0.0.2131 lineType

1.3.18.0.0.2133 linkName (naming attribute)

1.3.18.0.0.2134 linkStationRole

1.3.18.0.0.2137 maxBTUsize

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

2.9.3.2.7.65 objectClass

1.3.14.2.2.4.33 opEquipmentList

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

1.3.18.0.0.2236 partnerConnection

1.3.18.0.0.2142 portId

2.9.3.2.7.36 proceduralStatus

1.2.124.360501.1.302 supportedResources

1.3.18.0.0.2045 transmissionGroupNumber

2.9.3.5.7.14 underlyingConnectionNames

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

Table 33. Logical Unit Attribute Table

Attribute Identifier Attribute Name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

1.2.124.360501.1.209 attachedCircuitList

2.9.3.2.7.33 availabilityStatus

1.3.18.0.0.2194 dependencies

1.2.124.360501.1.240 functionID

1.3.18.0.0.1984 luName (naming attribute)

1.3.18.0.0.1819 luSecondName

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

2.9.3.2.7.65 objectClass

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

2.9.3.2.7.36 proceduralStatus

1.3.18.0.0.2018 residentNodePointer

1.2.124.360501.1.302 supportedResources

1.3.18.0.0.7900 tn3270ClientDnsName

1.3.18.0.0.7901 tn3270ClientIpAddress

Object and Attribute Tables

308 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Table 33. Logical Unit Attribute Table (continued)

Attribute Identifier Attribute Name

1.3.18.0.0.7902 tn3270ClientportNumber

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

0.0.13.3100.0.7.50 userLabel

Table 34. LU Group Attribute Table

Attribute Identifier Attribute Name

2.9.3.2.7.50 allomorphs

1.3.18.0.0.1808 luGroupMembers

1.3.18.0.0.1807 luGroupName (naming attribute)

1.3.18.0.0.1809 luGroupSize

2.9.3.2.7.63 nameBinding

2.9.3.2.7.65 objectClass

2.9.3.2.7.66 packages

Table 35. Migration Data Host Node Attribute Table

Attribute Identifier Attribute Name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

1.2.124.360501.1.209 attachedCircuitList

2.9.3.2.7.33 availabilityStatus

1.3.18.0.0.2194 dependencies

1.3.18.0.0.1967 erList

1.2.124.360501.1.240 functionID

1.3.18.0.0.1972 gatewaySSCP

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

1.3.18.0.0.1997 nnServerPointer

2.9.3.2.7.65 objectClass

1.3.14.2.2.4.33 opEquipmentList

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

2.9.3.2.7.36 proceduralStatus

1.3.18.0.0.2013 puName

1.3.18.0.0.2032 snaNodeName (naming attribute)

1.3.14.2.2.4.53 softwareList

1.3.18.0.0.2035 subareaAddress

1.3.18.0.0.2036 subareaLimit

1.2.124.360501.1.302 supportedResources

1.3.18.0.0.2296 sysplexInfo

Object and Attribute Tables

Appendix E. VTAM Topology Agent Object and Attribute Tables 309

Table 35. Migration Data Host Node Attribute Table (continued)

Attribute Identifier Attribute Name

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

Table 36. APPN Network Node Attribute Table

Attribute Identifier Attribute Name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

1.3.18.0.0.1940 appnNodeCapabilities

1.2.124.360501.1.209 attachedCircuitList

2.9.3.2.7.33 availabilityStatus

1.3.18.0.0.2194 dependencies

1.3.18.0.0.2025 dlurList

1.3.18.0.0.1970 extendedAppnNodeCapabilities

1.2.124.360501.1.240 functionID

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

2.9.3.2.7.65 objectClass

1.3.14.2.2.4.33 opEquipmentList

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

2.9.3.2.7.36 proceduralStatus

1.3.18.0.0.2019 resourceSequenceNumber

1.3.18.0.0.2020 routeAdditionResistance

1.3.18.0.0.2032 snaNodeName (naming attribute)

1.3.14.2.2.4.53 softwareList

1.2.124.360501.1.302 supportedResources

1.3.18.0.0.2296 sysplexInfo

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

Table 37. Port Attribute Table

Attribute Identifier Attribute Name

1.3.18.0.0.2115 abmSupported

1.3.18.0.0.2117 adapterAddresses

1.3.18.0.0.2118 adapterNumbers

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

2.9.3.2.7.33 availabilityStatus

2.9.3.5.7.1 connectionID

1.3.18.0.0.2194 dependencies

Object and Attribute Tables

310 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Table 37. Port Attribute Table (continued)

Attribute Identifier Attribute Name

1.3.18.0.0.2127 dlcName

1.3.18.0.0.2235 endpointForArc

1.2.124.360501.1.240 functionID

1.3.18.0.0.2129 limitedResource

1.3.18.0.0.2130 limitedResourceTimeout

1.3.18.0.0.2131 lineType

1.3.18.0.0.2134 linkStationRole

1.3.18.0.0.2137 maxBTUsize

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

2.9.3.2.7.65 objectClass

1.3.14.2.2.4.33 opEquipmentList

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

1.3.18.0.0.2236 partnerConnection

1.3.18.0.0.2142 portId (naming attribute)

2.9.3.2.7.36 proceduralStatus

1.3.18.0.0.2146 receiveWindowSize

1.3.18.0.0.2244 relatedAdapter

1.3.18.0.0.2148 sendWindowSize

1.2.124.360501.1.302 supportedResources

2.9.3.5.7.14 underlyingConnectionNames

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

Table 38. APPN Registered LU Attribute Table

Attribute Identifier Attribute Name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

2.9.3.2.7.33 availabilityStatus

1.3.18.0.0.2194 dependencies

1.2.124.360501.1.240 functionID

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

1.3.18.0.0.2284 nlrResidentNodePointer

1.3.18.0.0.2276 nonLocalResourceName (naming attribute)

1.3.18.0.0.2277 nonLocalResourceType

2.9.3.2.7.65 objectClass

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

Object and Attribute Tables

Appendix E. VTAM Topology Agent Object and Attribute Tables 311

Table 38. APPN Registered LU Attribute Table (continued)

Attribute Identifier Attribute Name

2.9.3.2.7.36 proceduralStatus

1.3.18.0.0.2273 registeredBy

1.2.124.360501.1.302 supportedResources

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

Table 39. Type 2.1 Node Attribute Table

Attribute Identifier Attribute Name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

1.2.124.360501.1.209 attachedCircuitList

2.9.3.2.7.33 availabilityStatus

1.3.18.0.0.2194 dependencies

1.2.124.360501.1.240 functionID

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

2.9.3.2.7.65 objectClass

1.3.14.2.2.4.33 opEquipmentList

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

2.9.3.2.7.36 proceduralStatus

1.3.18.0.0.2032 snaNodeName (naming attribute)

1.3.14.2.2.4.53 softwareList

1.2.124.360501.1.302 supportedResources

1.3.18.0.0.2296 sysplexInfo

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

Table 40. Type 4 Node Attribute Table

Attribute Identifier Attribute Name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

1.2.124.360501.1.209 attachedCircuitList

2.9.3.2.7.33 availabilityStatus

1.3.18.0.0.2194 dependencies

1.3.18.0.0.1967 erList

1.2.124.360501.1.240 functionID

1.3.18.0.0.1971 gatewayNode

1.3.18.0.0.1978 interconnectedNetids

2.9.3.2.7.63 nameBinding

Object and Attribute Tables

312 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Table 40. Type 4 Node Attribute Table (continued)

Attribute Identifier Attribute Name

1.3.18.0.0.2080 nativeStatus

2.9.3.2.7.65 objectClass

1.3.14.2.2.4.33 opEquipmentList

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

2.9.3.2.7.36 proceduralStatus

1.3.18.0.0.2032 snaNodeName (naming attribute)

1.3.18.0.0.2035 subareaAddress

1.3.18.0.0.2036 subareaLimit

1.2.124.360501.1.302 supportedResources

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

Table 41. Type 5 Node Attribute Table

Attribute Identifier Attribute Name

2.9.3.2.7.31 administrativeState

2.9.3.2.7.50 allomorphs

1.2.124.360501.1.209 attachedCircuitList

2.9.3.2.7.33 availabilityStatus

1.3.18.0.0.2194 dependencies

1.3.18.0.0.1967 erList

1.2.124.360501.1.240 functionID

1.3.18.0.0.1972 gatewaySSCP

2.9.3.2.7.63 nameBinding

1.3.18.0.0.2080 nativeStatus

2.9.3.2.7.65 objectClass

1.3.14.2.2.4.33 opEquipmentList

2.9.3.2.7.35 operationalState

2.9.3.2.7.66 packages

2.9.3.2.7.36 proceduralStatus

1.3.18.0.0.2013 puName

1.3.18.0.0.2032 snaNodeName (naming attribute)

1.3.14.2.2.4.53 softwareList

1.3.18.0.0.2035 subareaAddress

1.3.18.0.0.2036 subareaLimit

1.2.124.360501.1.302 supportedResources

1.3.18.0.0.2296 sysplexInfo

2.9.3.2.7.38 unknownStatus

2.9.3.2.7.39 usageState

Object and Attribute Tables

Appendix E. VTAM Topology Agent Object and Attribute Tables 313

Object and Attribute Tables

314 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Appendix F. VTAM Topology Agent Attributes Definition

For each attribute, the following table explains:

v ASN.1 syntax used for that attribute

v The information that attribute describes about the resource; for example, its DLC
address

v What VTAM resource that attribute is referring to

v Which CMIP operations can report that attribute

v Which OSI classes that attribute applies to.

abmSupported
Syntax

BOOLEAN
TRUE Supports asynchronous balance mode
FALSE

Does not support asynchronous balance mode
Meaning

Whether asynchronous balanced mode is supported
Source

XID3. This value is only TRUE when the XID format 3 received from a type
2.1 node indicates asynchronous balanced mode.

Operations
GET

Attribute of
port

adapterAddresses
Syntax

SET OF OCTET STRING
Meaning

Local DLC address; for example, local MAC/SAP address.
Source

Dependent on resource type:

NTRI physical line
The local MAC/SAP address returned as 14 characters; for
example, 11223344556601. The first 12 characters are the MAC
address and the last two are the SAP address. This is the value
coded on the LOCADD operand of the LINE definition statement in
an NCP major node.

Note: The local MAC/SAP address does not apply to NTRI logical
lines.

LAN or ATM LAN emulation switched line
The local MAC/SAP address for the XCA adapter associated with
the line. This information is available only when the line and PU are
active and the X'57' DLC address vector has been received.

LAN or ATM LAN emulation leased line
The local MAC/SAP address for the XCA adapter associated with
the line. This information is available only when the line and PU are
active and the X'57' DLC address vector has been received.

© Copyright IBM Corp. 1995, 2001 315

ATM native SVC (switched line) or PVC (nonswitched line)
The local ATM address for the IBM S/390 Open Systems Adapter
associated with the SVC or PVC. The local ATM address is
returned as a variable length character string. The following is an
example of an ATM address:
XXXXYYYYZZ...ZZ

where:

XXXX Represents the address type and plan and can be:

X'0101'
Indicates public E164 address, which means the
address is in a public ATM network.

X'0002'
Indicates International Organization for
Standardization (ISO) network service access point
(NSAP), which means the address is in a private
ATM network.

YYYY Represents the length of the address. The address can be
up to 20 bytes in hexidecimal format.

ZZ...ZZ
Represents the actual ATM address. The address can be
up to 20 bytes in length.

XCF line
The XCF token of the agent VTAM returned as 16 characters.

Operations
GET, SNAPSHOT(snaLocalTopo)

Attribute of
port

adapterNumbers
Syntax

SET OF INTEGER (0..65535)
Meaning

Address or addresses used to access the port
Source

Dependent on resource type:

Channel lines
This is the decimal representation of the channel unit address
coded on the ADDRESS operand of the LINE definition statement.

Multipath channel
This is the decimal representation of each read and write channel
unit address coded on the READ and WRITE operands of the LINE
definition statement in the MPC group.

APPN host-to-host channel
This is the decimal representation of each read and write channel
unit address coded on the READ and WRITE operands of the
transport resource list entry (TRLE) associated with the PU.

NCP SDLC lines
This is the decimal representation of the line address coded on
ADDRESS operand of the LINE definition statement.

Attributes Definition

316 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

XCA lines
The decimal channel unit address of the channel that connects
VTAM to the 3172 Interconnect Controller.

Operations
GET, SNAPSHOT(snaLocalTopo-appnOnly)

Attribute of
port

adjacentLinkStationAddress
Syntax

CHOICE { IsAddr OCTET STRING, noLSaddr NULL }
Meaning

DLC address for the remote PU.

For SDLC
SDLC polling address

For token ring and frame relay
Remote MAC/SAP address

For ATM native SVCs
Destination ATM address

For ATM native PVCs
Null string

For XCF
XCF token of the adjacent VTAM

Source
Dependent on resource type:

For SDLC non-switched PUs
The SDLC polling address of the PU. This is specified on the ADDR
operand of the PU statement.

For NTRI logical switched PUs
The MAC/SAP address of the remote PU in the form
11223344556601. The first 12 characters are the MAC address and
the last two are the SAP address. This information is available only
when the line and PU are active and the X'57' DLC address vector
has been received.

For NTRI logical subarea PUs
The MAC/SAP address of the remote link station. The MAC
address is coded on the LOCADD operand of the LINE. The SAP
address for NCP NTRI is X'04'.

LAN or ATM LAN emulation peripheral connections (switched)
The MAC/SAP address of the remote PU. This information is
available only when the line and PU are active and the X'57' DLC
address vector has been received.

LAN or ATM LAN emulation subarea connections (leased)
The MAC/SAP address of the remote link station. This MAC
address is defined on the MACADDR operand of the PU definition
statement. The SAP address is defined on the SAPADDR operand
of the PU definition statement.

ATM native connections (TGs over SVCs)
The destination ATM address for the remote node associated with

Attributes Definition

Appendix F. VTAM Topology Agent Attributes Definition 317

the SVC. The destination ATM address The remote ATM address is
returned as a variable length character string. The following is an
example of an ATM address:
XXXXYYYYZZ...ZZ

where:

XXXX Represents the address type and plan and can be:

X'0101'
Indicates public E164 address, which means the
address is in a public ATM network.

X'0002'
Indicates International Organization for
Standardization (ISO) network service access point
(NSAP), which means the address is in a private
ATM network.

YYYY Represents the length of the address. The address can be
up to 20 bytes in hexidecimal format.

ZZ...ZZ
Represents the actual ATM address. The address can be
up to 20 bytes in length.

ATM native connections (TGs over PVCs)
The destination ATM address for the remote node associated with
the PVC is unknown.

XCF connections
The XCF token of the adjacent VTAM returned as 16 characters.
This information is available only when the XCF connection is
active.

Operations
GET, SNAPSHOT (snaLocalTopo)

Attribute of
logicalLink

adjacentNodeName
Syntax

GraphicString (SIZE(0..17))
Meaning

Network qualified name of node connected to this logicalLink.
Source

Generally, this information is available only when the line and PU are active.
This represents the name of the adjacent node and depends on the type of
connection (subarea or APPN) and the code level of the contacted node.
These nodes are capable of providing the X'0EF1', X'0EF4', and X'0EF7'
control vectors during CONTACT processing.

Subarea connection to VTAM V4R3 or later
The SSCP name of the VTAM contacted by this link station.

Subarea connection to NCP V7R1 or later
The PU name of the NCP contacted by this link station. This might
be the same as the NCP load module name.

Attributes Definition

318 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Subarea connection to backlevel subarea node (NCP earlier than V7R1
or VTAM earlier than V4R3)

The name is represented as a character string with the decimal
subarea number of the contacted node. For example, 00000123
would be the name for a backlevel subarea node with subarea
number 123.

APPN connections
The CP name of the contacted APPN node.

LEN connections
The CP name of the contacted LEN node or the predefined CP
name or the name of the VTAM host CP supporting the LEN
connection.

Operations
GET

Attribute of
logicalLink

adjacentNodeType
Syntax

ENUMERATED { unknown,

len,
nn,
en,
t1,
t20,
t4,
t5,
t21 }

Meaning
Type of attached PU or node.

Source
The node type is provided as it is currently known according to definitions
at VTAM topology agent host. This attribute is related to the PUTYPE and
XID operand of the PU definition statement. The value provided may
change after the node is contacted and VTAM determines the actual node
type of the contacted node.

PUTYPE XID AdjacentNodeType

1 N/A t1

2 NO t20

2 YES t21 (if not yet contacted)

2 YES len (contacted len node)

2 YES en (contacted APPN end node)

2 YES nn (contacted APPN network node)

4 N/A t4 (contacted PU type 4)

4 N/A t5 (contacted PU type 5)

5 N/A t5 (contacted PU type 5)

Note: logicalLinks represent either a subarea or APPN connection to an
adjacent node. Therefore, the adjacent node type is never be a

Attributes Definition

Appendix F. VTAM Topology Agent Attributes Definition 319

composite of subarea and APPN (for example, an interchange node).
The manager application program must infer the actual node type of
composite nodes or consult an agent application program at the
node in question.

Operations
GET, SNAPSHOT(snaLocalTopo)

Attribute of
logicalLink

administrativeState
Syntax

Two types: ENUMERATED { locked,

unlocked,
shuttingDown }

OCTET: X'00'= locked

X'00'= locked
X'01'= unlocked
X'02'= shuttingDown
X'FF'= unchanged

ENUMERATED is used for GET operations. OCTET is used for
SNAPSHOT operations.

Meaning
OSI administrative state.

Source
Value is always “unlocked”.

Operations
GET, SNAPSHOT(all types)

Attribute of
all objects

allomorphs
Syntax

SET OF ObjectClass (OIs)
Meaning

Classes for which this class can emulate. Constant value; depends on
object class.

Source
Depends on the object class

Object Class
allomorphs

t5Node
(lenNode, t2-1Node)

appnNN
(lenNode, t2-1Node)

appnEN
(lenNode, t2-1Node)

interchangeNode
(lenNode, t2-1Node, t5Node, appnNN)

migrationDataHost
(lenNode, t2-1Node, t5Node, appnEN)

Attributes Definition

320 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

others
()

Operations
GET

Attribute of
all objects

appnNodeCapabilities
Syntax

OCTET STRING (SIZE(2))
Meaning

SNA control vector 45, subfield 80:

Bit Meaning

1...
Gateway function supported

.1..
Directory server function supported

..1.
Intermediate routing function supported

...1
Chain function supported

.... 00..
Reserved

.... ..00
SNA node type 5

.... ..11
SNA node type 2.1

1...
Release 1 border node

.1..
Interchange node

..1.
Release 2 border node

...0 0...
No HPR support

...0 1...
HPR base support

...1 0...
HPR base and tower support

...1 1...
Reserved

.... .000
Reserved

Source
This information is provided only for the node running the VTAM topology
agent and only when the node is capable of being an APPN network node.

Attributes Definition

Appendix F. VTAM Topology Agent Attributes Definition 321

Operations
GET, SNAPSHOT(snaNetwork, snaLocalTopo)

Attribute of

interchangeNode
appnNN

appnTGcapabilities
Syntax

OCTET STRING (SIZE(1))
Meaning

TG capabilities of an APPN transmission group from SNA control vector 46,
subfield 80, flags byte

Bit Meaning

1...
tgPartnerIsAConnectionNetwork

.1..
Peripheral TG

..1.
tgPartnerType is type 2

..0.
tgPartnerType is type 2.1

...0 0...
tgType is boundary function or APPN TG

...0 1...
tgType is interchange TG

...1 0...
tgType is virtual route TG

...1 1...
Reserved

.... .1..
intersubnetworkLink for Release 1 border nodes

.... .0..
intersubnetworkLink for Release 2 border nodes

.... ..1.
Reserved

.... ...1
Reserved

Source
CV 46, subfield 80 for active APPN TGs. This attribute does not apply to
LEN connections.

Operations
SNAPSHOT(snaNetwork,snaLocalTopo)

Attribute of
appnTransmissionGroup

Attributes Definition

322 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

attachedCircuitList
Syntax

SET OF ObjectInstance
Meaning

VTAM always builds the empty set, ().
Source

Not supported
Operations

GET
Attribute of

appnEN
interchangeNode
lenNode
logicalUnit
migrationDataHost
appnNN
t2-1Node
t4Node
t5Node

availabilityStatus
Syntax

SET OF INTEGER { inTest (0),

failed (1),
powerOff (2),
offLine (3),
offDuty (4),
dependency (5),
degraded (6),
notInstalled (7),
logFull (8) }

OCTET: X'00'= no Status

X'01'= notInstalled
X'02'= degraded
X'04'= dependency
X'08'= offDuty
X'10'= offLine
X'20'= powerOff
X'40'= failed
X'80'= inTest
X'FF'= no change

INTEGER is used for GET and NOTIFICATION operations.

OCTET is used for SNAPSHOT operations.
Meaning

OSI availability status: The following values can be returned by VTAM:
offline, failed, intest, dependency, degraded, and no information NULL.

Attributes Definition

Appendix F. VTAM Topology Agent Attributes Definition 323

Source
Determined from VTAM resource definition table entry (RDTE) finite state
machine (FSM) state or SNA control vector 45, subfield 80 depending on
resource type.

Operations
GET, SNAPSHOT(all types), NOTIFICATIONS

Attribute of
all objects except luGroup

cdrscRealLUname
Syntax

SNAcsAD-819(SIZE(0..17))
Meaning

Represents the network-qualified real LU name (instead of an alias name)
for a cross-domain resource.

Source
Valid for a cross-domain resource that has been verified by session
establishment with the actual resource represented by the CDRSC. The real
name may vary from the CDRSC name due to alias name translation.

Operations
GET, SNAPSHOT (luCollection, luIndex)

Attribute of
crossDomainResource

connectionID
Syntax

GraphicString
Meaning

Address or addresses used to access the port
Source

The information provided is similar to that provided for adapterNumbers.
However, this attribute provides the data in character format that might
contain hexadecimal characters.

v For a port object, the value is described by the following:

Channel lines
This is the hex representation of the channel unit address coded
on the ADDRESS operand of the LINE definition statement.

Multipath channel
This is the hex representation of each read and write channel
unit address coded on the READ and WRITE operands of the
LINE definition statement in the MPC group. Each address each
separated by a comma.

APPN host-to-host channel
This is the hex representation of each read and write channel
unit address coded on the READ and WRITE operands of the
transport resource list entry (TRLE) associated with the PU. Each
address is separated by a comma.

NCP SDLC lines
This is the decimal representation of the line address coded on
ADDRESS operand of the LINE definition statement.

LAN or ATM LAN emulation lines
The hex channel unit address of the channel that connects VTAM

Attributes Definition

324 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

to the IBM 3172 Nways Interconnect Controller or the IBM S/390
Open Systems Adapter. This attribute appends the slot number to
the channel address separated by a period; for example,
590.001. The slot number is coded on the ADAPTNO operand of
the PORT statement in the external communications adapter
(XCA) major node.

ATM native SVCs (switched lines) and PVCs (nonswitched lines)
The name of the TRLE definition statement in the TRL major
node that defines the IBM S/390 Open Systems Adapter.

XCA Lines for Enterprise Extender
This is the local host virtual IP address (VIPA).

v For a logicalLink object, the value is described by the following:

ATM native SVCs (switched lines) and PVCs (nonswitched lines)
The virtual path connection identifier/virtual channel identifier
(VPCI/VCI) received on the CM_CONNECT indication.

Switched PUs for Enterprise Extender lines
This is the remote host virtual IP address (VIPA).

Operations
GET, SNAPSHOT(snaLocalTopo-appnPlusSubarea)

Attribute of

logicalLink
port

connectionType
Syntax

ENUMERATED { unknown,

host,
peer,
host-and-peer }

Meaning
Type of connection to node:
peer T2.1 nodes not requesting ACTPU
host-and-peer

T2.1 nodes requesting ACTPU
host FID4 connections
unknown

Inactive FID2 connections
Source

For type 2.1 node, the XID format 3 indicates ACTPU requirements. FID4
connections are determined by system definition.

Operations
GET

Attribute of
logicalLink

cp-cpSessionSupport
Syntax

BOOLEAN
TRUE APPN TG is capable of CP-CP sessions.

Attributes Definition

Appendix F. VTAM Topology Agent Attributes Definition 325

FALSE
APPN TG is not capable of CP-CP sessions.

Meaning
Whether TG is capable of supporting CP-CP sessions. This does NOT
indicate whether CP-CP sessions exist; it indicates only that the capability
exists.

Source
Determined from TG control vector X'47'.

Operations
SNAPSHOT(snaNetwork), SNAPSHOT(snaLocalTopo)

Attribute of
appnTransmissionGroup

definitionGroupName
Syntax

GraphicString
Meaning

Major node type and major node name.
Source

Major node type and name are determined from system definition. The type
and name are concatenated and separated by a period; for example,
NCP.NCP3AB7.

The following major node types are supported.

Prefix Description
NCP NCP major node
APPL Application major node
LCLNONSNA

Local non-SNA major node
SWITCHED

Switched major node
LOCALSNA

Local SNA major node
CDRM

CDRM major node
CDRSC

CDRSC major node
CA Channel Attached major node
MODEL

Model major node
LAN ICA LAN major node
PACKET

Packet major node
XCA XCA major node
LUGROUP

LUGROUP major node
ADJCP

Adjacent CP major node
TCP TCP/IP major node
TRL Transport resource list major node

Operations
GET, SNAPSHOT(snaLocalTopo)

Attribute of
definitionGroup

Attributes Definition

326 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

dependencies
Syntax

CHOICE { unknown -0- IMPLICIT NULL,

noDependents -1- IMPLICIT NULL,
dependendents Dependents }

Dependents ::= CHOICE { item ObjectInstance,

and IMPLICIT SET OF Dependents,
or IMPLICIT SET OF Dependents}

Meaning
Higher level object upon which the object of interest is dependent. This
usually includes the definitionGroup object that has information about the
VTAM major node and type.

Object Type
Dependent On

port definition group, logicalLink, VTAM, NCP

NTRI logical lines that are represented as port objects report the
physical unit as a dependency, when known.

logicalLink
definition group, port

Switched logicalLinks report a port dependency only when the PU
is connected.

Note: VTAMTOPO line filtering does not affect port dependency.

t4Node
definition group, VTAM

logical unit
definition group, logicalLink, VTAM, dependent LU requester

Dependent logical units have a dependency on the owning PU. The
owning PU is represented as a logicalLink. The logicalLink is not
included for logicalUnits owned by the VTAM host, such as
application programs.

Dependent LUs that use the dependent LU requester and
dependent LU server function are dependent on the dependent LU
requester node, which is represented as a snaNode.

cdrsc definition group, snaNode

CDRSCs have a dependency on the owning CDRM, when known.
The owning CDRM is represented as an snaNode.

Source
The major node type and name and the higher level resource name are
determined from system definitions.

Operations
GET, SNAPSHOT(snaLocalTopo, snaNetwork, luCollection)

Attribute of
all objects except luGroup

Attributes Definition

Appendix F. VTAM Topology Agent Attributes Definition 327

dlcName
Syntax

GraphicString (SIZE(1..8))
Meaning

A character constant describing the data link control name, as shown in the
following list. VTAM might not support each DLC listed.

Constant
Description

IBMTRNET
Token Ring

FDDI Fiber
SDLC SDLC
CSMA CSMA
FRRELAY

Frame Relay
SMDS SMDS
CHANNEL

Channel
ETHERAND

Ethernet
TOKENBUS

Token Bus
ISDNBASC

ISDN basic
ISDNPRI

ISDN primary
ISDNBB

ISDN broadband
ATM Asynchronous Transfer Mode
XCF Cross-system Coupling Facility

Source
Determined from system definition.

Operations
GET, SNAPSHOT (snaLocalTopo)

Attribute of
port

dlurList
Syntax

SET OF ObjectInstance
Meaning

The list of dependent LU requester (DLUR) nodes served by this dependent
LU server (DLUS) node. VTAM always returns empty set.

Source
Not supported.

Operations
GET

Attribute of

appnNN
interchangeNode

Attributes Definition

328 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

dlurLocalLsAddress
Syntax

CHOICE { noLSaddr NULL, lsAddr OCTET STRING }
Meaning

The local DLUR DLC address.
Source

The MAC/SAP address of the DLUR LAN adapter used for the connection
to the PU reporting this attribute. This value is in the form 11223344556601
where the first 12 characters are the MAC address and the last two are the
SAP address. This information is available when the PU is active and the
x’57’ DLC address vector has been received.

Operations
GET, SNAPSHOT (snaLocalTopo)

Attribute of
logicalLink

When a DLUR supports downstream PUs, an instance with this behavior
reports the local addressing information (for example, a LAN MAC and SAP
at the DLUr’s end) for the logical link between the DLUR and the
downstream PU.

dlurName
Syntax

CHOICE { noInfo NULL, object ObjectInstance }
Meaning

The network-qualified name of the dependent LU requester (DLUR) node
associated with this logicalLink.

Source
This attribute value is determined when a switched PU connects to a
dependent LU requester.

Operations
GET, SNAPSHOT (snaLocalTopo)

Attribute of
logicalLink

endpointForArc
Syntax

CHOICE { noinfo NULL, object ObjectInstance }
Meaning

VTAM always returns noinfo NULL.
Source

Not supported.
Operations

GET
Attribute of

logicalLink
port

erList
Syntax

SET OF ObjectInstance
Meaning

VTAM always returns empty set.

Attributes Definition

Appendix F. VTAM Topology Agent Attributes Definition 329

Source
Not supported.

Operations
GET

Attribute of

interchangeNode
migrationDataHost
t4Node
t5Node

extendedAppnNodeCapabilities
Syntax

OCTET STRING (SIZE(2))
Meaning

SNA control vector 45, subfield 81:

Bit Meaning

1...
Node is central director server

.000 0000
Reserved

0000 0000
Reserved

Source
The VTAM topology data base.

Operations
GET, SNAPSHOT (snaNetwork, snaLocalTopo)

Attribute of

interchangeNode
appnNN

functionID
Syntax

CHOICE { number INTEGER, string GraphicString }
Meaning

Value of the low-order relative distinguished name in the distinguished
name of the object. This is the common name of the object.

Source
The value is determined from the GET request.

Operations
GET

Attribute of
all objects except luGroup

gatewayNode
Syntax

BOOLEAN
TRUE The type 4 node is capable of acting as a gateway node.
FALSE

The type 4 node is not capable of acting as a gateway node.

Attributes Definition

330 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Meaning
Whether type 4 node is capable of acting as a gateway node.

Source
This capability is indicated on the ACTPU response.

Operations
GET, SNAPSHOT (snaLocalTopo)

Attribute of
t4Node

gatewaySSCP
Syntax

BOOLEAN
TRUE The node running the VTAM topology agent is capable of acting as

a gateway node
FALSE

The node running the VTAM topology agent is not capable of acting
as a gateway node

Meaning
Whether the node running the VTAM topology agent is capable of acting as
a gateway node

Source
Start option definition for GWSSCP start option.

Operations
GET, SNAPSHOT(snaLocalTopo)

Attribute of

interchangeNode
migrationDataHost
t5Node

interconnectedNetids
Syntax

SET OF SEQUENCE { native BOOLEAN,

netid ObjectInstance,
netIdRole ENUMERATED { static (0),

dynamic (1) },

subareaAddress subareaAddress,
subareaLimit SubareaLimit }

Meaning
The network identifiers supported by a gateway NCP.

Source
These network identifiers are either defined on the NETWORK operand of
the NCP major node or they are discovered by using the NOTIFY RUs from
the NCP.

Operations
GET, SNAPSHOT(snaLocalTopo)

Attribute of
t4Node

Attributes Definition

Appendix F. VTAM Topology Agent Attributes Definition 331

limitedResource
Syntax

BOOLEAN
TRUE The port is a limited resource.
FALSE

The port is not a limited resource.
Meaning

Whether the port is a limited resource.
Source

System defintion for line represented by port object. Limited resource status
is indicated by the LIMRES keyword.

Operations
GET

Attribute of
port

limitedResourceTimeout
Syntax

CHOICE { integer INTEGER,uninitialized NULL }
Meaning

This attribute is always returned as uninitialized NULL.
Source

Not supported.
Operations

GET
Attribute of

port

lineType
Syntax

ENUMERATED { switched, nonswitched }
Meaning

Depends on whether the line is switched.
switched

The line or physical unit is a switched resource.
nonswitched

The line or physical unit is not a switched resource.

For ATM native connections: are nonswitched.
Source

System definition for the PU.
Operations

GET, SNAPSHOT (snaLocalTopo)
Attribute of

logicalLink
port

linkName
Syntax

GraphicString (SIZE(1..17))
Meaning

The name of the physical unit represented by the logicalLink object.

Attributes Definition

332 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Source
System definition for the PU or link station.

Operations
GET

Attribute of
logicalLink

linkStationRole
Syntax

ENUMERATED { secondary,

primary,
negotiable,
unknown }

Meaning
Indicates the role of the link station represented by the logicalLink object.

Source
This is determined by system definition and XIDs where applicable.

Operations
GET

Attribute of

logicalLink
port

luGroupMembers
Syntax

SET OF Fully-QualifiedNAUname
SNAcsAD-819(SIZE(1..17))

Meaning
Network-qualified names of the resources that make up an luGroup object.

Source
Depends on the underlying implementation of the luGroup.

USERVAR
The name specified on the VALUE= keyword when defining a
USERVAR.

Generic resource
The names of real application programs associated with the generic
resource definition. Application programs are added to or deleted
from the luGroup with the SETLOGON macroinstruction of the
VTAM application programming interface (API).

Operations
GET, SNAPSHOT (luCollection)

Attribute of
luGroup

luGroupName
Syntax

SNAcsAD-819(SIZE(1..8))
Meaning

The naming attribute of the luGroup object.

Attributes Definition

Appendix F. VTAM Topology Agent Attributes Definition 333

Source
This is the name provided on a GET request for an luGroup object.

Operations
GET

Attribute of
luGroup

luGroupSize
Syntax

NonnegativeNumber
Meaning

Number of members in the luGroup object.
Source

For a USERVAR, this is always 1. For a generic resource, this is the
number of application programs associated with the generic resource. This
corresponds to the number of member names provided in the
luGroupMembers attribute.

Operations
GET

Attribute of
luGroup

luSecondName
Syntax

GraphicString
Meaning

For logicalUnit objects that are VTAM application programs, this attribute
provides the ACB name of the application. For logicalUnit objects that are
not application programs, this attribute value is the null string.

Source
The ACBNAME is coded on the APPL application definition in an application
program major node. The ACBNAME may be the same as the application
name.

Operations
GET

Attribute of
logicalUnit

maxBTUsize
Syntax

CHOICE { maxBTUsize INTEGER (1..32767), noMaxBTUsize NULL }
Meaning

VTAM always builds (noMaxBTUsize NULL).
Source

This attribute value is not supported.
Operations

GET
Attribute of

logicalLink
port

Attributes Definition

334 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

nameBinding
Syntax

OBJECT IDENTIFIER
Meaning

The name binding object from which VTAM derives the naming attribute of
the object class.

Source
Constant for each object class

Operations
GET

Attribute of
all objects

nativeStatus
Syntax

INTEGER { active (0),

activeWithSession (1),
inactive (2),
neverActive (3),
pendingActive (4),
pendingInactive (5),
connectable (6),
routable (7),
operative (8),
congested (9),
released (10),
reset (11),
inoperative (12) }

OCTET: X'02'= inactive

X'03'= neverActive
X'04'= pendingActive
X'05'= pendingInactive
X'06'= connectable
X'07'= routable
X'09'= congested
X'0A'= released
X'0B'= reset
X'0C'= inoperative
X'FF'= no change

INTEGER is used for GET and NOTIFICATION operations.

OCTET is used for snapshot operations.
Meaning

The VTAM status of the resource. All of the states except the “congested”
status correspond with existing VTAM resource states. The “congested”
status indicates that an NCP type 4 node is in slowdown.

Source
The finite state machine and modifiers in the RDTE for the resource.

Note: This value usually corresponds with the resource status displayed on
VTAM message IST486I. However, the VTAM display is usually more

Attributes Definition

Appendix F. VTAM Topology Agent Attributes Definition 335

specific since VTAM defines many more intermediate resource states
than are provided by the VTAM topology agent.

Operations
GET, SNAPSHOT (all types), NOTIFICATIONS

Attribute of
all objects except luGroup

nlrResidentNodePointer
Syntax

GraphicString
Meaning

Name of the CP or SSCP that owns the real resource represented by this
CDRSC or appnRegisteredLu object.

Source
Depends on Object type

CDRSC
This is the owning CP or SSCP. This may be predefined or learned
as a result of session establishment. When this information is
unknown, the null string is returned.

appnRegisteredLu
This is the CP name for this resource.

Operations
GET, SNAPSHOT (luCollection)

Attribute of

CDRSC
appnRegisteredLu

nnServerPointer
Syntax

CHOICE { noObject NULL, Object ObjectInstance }
Meaning

This is the object instance that represents the network node server for the
node running the VTAM topology agent when the node is an APPN end
node or migration data host. The null form is provided when the network
node server is not known.

Source
The network node server is determined at the time CP-CP sessions are
established. Potential network node servers might be defined in a network
node server list major node, but this attribute is available only when a
server has actually been selected.

Operations
GET

Attribute of

appnEN
migrationDataHost

nonLocalResourceName
Syntax

GraphicString

Attributes Definition

336 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Meaning
The name specified on the GET operation for the registeredLU object or the
CDRSC object.

Source
The input name is returned in this attribute.

Operations
GET

Attribute of

CDRSC
appnRegisteredLu

nonLocalResourceType
Syntax

GraphicString
Meaning

The object type of the object found with the nonLocalResourceName
attribute. The values are:
v CDRSC
v appnRegisteredLu.

Source
The resulting type depends on the type of the resource found as a result of
a GET operation. If both exists, CDRSC is returned.

Operations
GET

Attribute of

CDRSC
appnRegisteredLu

objectClass
Syntax

OBJECT IDENTIFIER
Meaning

The object class of the object containing this attribute
Source

From VTAM resource information
Operations

GET
Attribute of

all objects

opEquipmentList
Syntax

SET OF ObjectInstance
Meaning

For the node running the VTAM topology agent, a distinguished name in the
form:
distinguishedName
"1.3.18.0.2.4.8=ORGREG;
2.5.4.10=IBM;
1.3.18.0.2.4.7=<CPU Model>;
1.3.14.2.2.4.50=<CPU Serial Number>"

Attributes Definition

Appendix F. VTAM Topology Agent Attributes Definition 337

<CPU Model> is a character string that contains the actual CPU model for
the agent host. <CPU Serial Number> is a character string that contains the
serial number for the agent host.

For non-host objects, the null set is returned.
Source

Determined from system storage.
Operations

GET, SNAPSHOT (snaLocalTopo)
Attribute of

appnEN
interchangeNode
lenNode
logicalLink
migrationDataHost
appnNN
port
t2-1Node
t4Node
t5Node

opNetworkName
Syntax

GraphicString
Meaning

The network name of the network where the LU represented by the CDRSC
object resides, when available.

Source
For predefined alias CDRSCs that are not in session, this information is
unknown and the null string is provided. Otherwise, this is the predefined or
learned NETID of the resource represented by this CDRSC object.

Operations
GET

Attribute of
CDRSC

operationalState
Syntax

ENUMERATED { disabled, enabled } OCTET: X'00'= disabled

X'01'= enabled
X'FF'= no change

ENUMERATED is used for GET and NOTIFICATION operations.

OCTET is used for snapshot operations.
Meaning

The OSI operational state.
Source

Determined from VTAM resource definition table entry (RDTE) finite state
machine (FSM) state or SNA control vector 45, subfield 80 depending on
resource type.

Operations
GET, SNAPSHOT (all types), NOTIFICATIONS

Attributes Definition

338 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Attribute of
all objects except luGroup

packages
Syntax

SET OF OBJECT IDENTIFIER
Meaning

The packages of attributes supported by VTAM for an object class.
Source

Constant set of attributes for each class
Operations

GET
Attribute of

all objects

partnerConnection
Syntax

CHOICE { noinfo NULL,object ObjectInstance }
Meaning

This is the object instance that represents the logicalLink on other end of a
subarea or APPN TG connection, when available.

Source
This is the name of the partner link station provided by the X'0EF7' control
vector on XID. This information is available from APPN nodes and uplevel
subarea nodes. Uplevel subarea nodes are VTAM V4R3 or NCP V7R1 or
later. LogicalLinks must be active to obtain this information.

Operations
GET

Attribute of

logicalLink
port

portId
Syntax

GraphicString
Meaning

Name of the port object. When reported as an attribute of logicalLink, this
identifies the SNA line associated with the physical unit. When reported as
an attribute of port, it names the port object.

Source
The port object represents a SNA LINE or DAN. SNA lines are defined
during system definition or are dynamically created when channel attached
NCPs are activated. Dynamically created lines have names of the form
0321-L where the first 4 characters are the printable hex representation of
the channel unit address coded on the CUADDR operand of the PCCU
statement in the NCP major node.

DANs represent connections to SNA controllers and are not explicitly
defined. The name for the DAN is constructed from the channel unit
address on the CUADDR operand of the PU statement in the local SNA
major node. For example, CUADDR=16, would result in a portid of
000016-L.

Attributes Definition

Appendix F. VTAM Topology Agent Attributes Definition 339

Operations
GET, SNAPSHOT (snaLocalTopo)

Attribute of

logicalLink
port

proceduralStatus
Syntax

SET OF INTEGER { initializationRequired (0)

notInitialized (1)
initializing (2)
reporting (3)
terminating (4) }

OCTET: X'00'= no status

X'08'= terminating
X'10'= reporting
X'20'= initializing
X'40'= not initialized

INTEGER is used for GET and NOTIFICATION operations.

OCTET is used for snapshot operations.
Meaning

OSI state procedural status.
Source

Determined from VTAM resource definition table entry (RDTE) finite state
machine (FSM) state or SNA control vector 45, subfield 80 depending on
resource type.

Operations
GET, SNAPSHOT (all types), NOTIFICATIONS

Attribute of
all objects except luGroup and definitionGroup

puName
SNAcsA-819 (SIZE(1..8))

Meaning
This is the name of the VTAM Agent host’s subarea PU.

Source
The VTAM host subarea PU name is defined on the HOSTPU start option
or is defaulted to ISTPUS.

Operations
GET, SNAPSHOT (snaLocalTopo)

Attribute of

interchangeNode
migrationDataHost
t5Node

Attributes Definition

340 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

receiveWindowSize
Syntax

CHOICE { integer INTEGER, uninitialized NULL }
Meaning

VTAM always returns uninitialized NULL.
Source

Not supported
Operations

GET
Attribute of

port

realSSCPname
Syntax

SNAcsAD-819 (SIZE(0..17))
Meaning

The real name of a cross domain resource manager as known at its SSCP.
This information is not known until a CDRM-CDRM session has been
established to the CDRM.

Source
This information is determined from SSCP Name control vector X'18' when
available.

Operations
SNAPSHOT (snaNetwork-appnPlusSubarea)

Attribute of
crossDomainResourceManager

registeredBy
Syntax

ObjectInstance
Meaning

Provides the name of the node which registered the logical unit represented
by this nonlocal resource.

Source
Name of the end node that registered the LU. This attribute is only known
at Directory Server and Network Node Server agent hosts that have the
resource registered.

Operations
GET

Attribute of
appnRegisteredLu

relatedAdapter
Syntax

CHOICE { noinfo NULL, object ObjectInstance }
Meaning

A logicalLink instance that is providing the physical connection for a logical
line represented by a port object.

Source
The physical resource is applicable to NTRI logical lines and is determined
at connection time. The physical PU is determined by the Related Resource
Network Name subfield of the X'57' control vector provided by NCP.

Attributes Definition

Appendix F. VTAM Topology Agent Attributes Definition 341

Operations
GET, SNAPSHOT (snaLocalTopo)

Attribute of
port

residentNodePointer
Syntax

ObjectInstance
Meaning

Name of a managed object representing the SNA node upon which this
logicalUnit resides.

Source
For Dependent LUs, this represents the PU under which the LU is defined.
For application programs and local non-SNA terminals, this represents the
VTAM host.

Operations
GET, SNAPSHOT (luCollection)

Attribute of
logicalUnit

resourceSequenceNumber
Syntax

INTEGER (0..2**32-1)
Meaning

For a GET on the VTAM agent host object, this attribute provides the
current resource sequence number for the node. For
SNAPSHOT(snaNetwork) this attribute provides the current resource
sequence number for an appnTransmissionGroup object.

Source
VTAM resource data

Operations
GET, SNAPSHOT (snaNetwork)

Attribute of

interchangeNode
appnNN
appnTransmissionGroup

routeAdditionResistance
Syntax

INTEGER (0..255)
Meaning

VTAM always provides the value 0.
Source

Not supported.
Operations

GET
Attribute of

interchangeNode
appnNN

Attributes Definition

342 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

sendWindowSize
Syntax

CHOICE { integer INTEGER, uninitialized NULL }
Meaning

VTAM always provides uninitialized NULL.
Source

Not supported.
Operations

GET
Attribute of

port

snaNodeName
Syntax

SNAcsAD-819 (SIZE(1..17))
Meaning

The name of an SNA node.
Source

For the VTAM host objects, this is the CP or SSCP name. For t4Node
objects, this is the NCP PU name. For t2-1Node or lenNode, this is the CP
name.

Note: GET support for all node types except t4Node is limited to the VTAM
agent host.

Operations
GET

Attribute of

appnEN
interchangeNode
lenNode
migrationDataHost
appnNN
t2-1Node
t4Node
t5Node

softwareList
Syntax

SET OF ObjectInstance
Meaning

Provides the version and release of the VTAM running at the agent host.
distinguishedName
"1.3.18.0.2.4.8=ORGREG;
2.5.4.10=IBM;
0.0.13.3100.0=(pString
ACF/VTAM.<version>.<release>.

<dot rel>)"

Source
VTAM storage.

Operations
GET, SNAPSHOT (snaLocalTopo)

Attribute of

Attributes Definition

Appendix F. VTAM Topology Agent Attributes Definition 343

appnEN
interchangeNode
lenNode
migrationDataHost
appnNN
t2-1Node
t5Node

subareaAddress
Syntax

INTEGER (1..65535)
Meaning

The subarea address associated with the subarea object instance.
Source

For the agent host object types, this is the value of the HOSTSA start
option.

For t4Node objects that represent NCPs, this is the value of the SUBAREA
operand of the PCCU statement in an NCP major node.

Operations
GET, SNAPSHOT (snaLocalTopo)

Attribute of

interchangeNode
migrationDataHost
t4Node
t5Node

subareaLimit
Syntax

INTEGER (255..65535)
Meaning

The subarea limit associated with the subarea object instance.
Source

For the agent host object types, this is the value of the MXSUBNUM start
option.

For t4Node objects that represent NCPs, this is the value of the SALIMIT
operand of the NETWORK statement in an NCP major node. VTAM obtains
this value at ACTPU response time, not from the NCP definition.

Operations
GET, SNAPSHOT (snaLocalTopo)

Attribute of

interchangeNode
migrationDataHost
t4Node
t5Node

supportedResources
Syntax

CHOICE { noResources NoResources, resources SET OF ObjectInstance }

NoResources ::= ENUMERATED { infoUnavailable,

Attributes Definition

344 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

none }
Meaning

When provided for the VTAM agent host object, this attribute contains a set
of definitionGroup objects that represent all the major nodes defined at this
host. For all other object types, (noResources none) is returned.

Source
This information is obtained from the system definitions at the agent host.

Operations
GET

Attribute of
all objects except luGroup

sysplexInfo
Syntax

GraphicString
Meaning

Name of the MVS/ESA sysplex, if known.
Source

This name is obtained from the MVS/ESA CVT when available.
Operations

GET, SNAPSHOT (snaLocalTopo)
Attribute of

appnEN
interchangeNode
lenNode
migrationDataHost
appnNN
t2-1Node
t5Node

tn3270ClientDnsName
Syntax

CHOICE { noDnsName NULL, fullName GraphicString, truncatedName
GraphicString }

Meaning
The TN3270 client DNS name.

Source
The client DNS name associated with TN3270 LU.

Operations
GET, SNAPSHOT (luCollection), NOTIFICATIONS

Attribute of
logicalUnit

This attribute returns either a GraphicString representation of a Domain
Name Service (DNS) name for the TN3270 client associated with this LU,
or a NULL value indicating that there is no client DNS name associated with
this LU. If a name is returned, there is an indication whether it is a full
name or a truncated name.

tn3270ClientIpAddress
Syntax

CHOICE { noIpAddress NULL, ipv4 GraphicString(SIZE(7..15)) }

Attributes Definition

Appendix F. VTAM Topology Agent Attributes Definition 345

Meaning
The TN3270 client IP address.

Source
The IP address associated with TN3270 LU.

Operations
GET, SNAPSHOT (luCollection), NOTIFICATIONS

Attribute of
logicalUnit

This attribute returns either a NULL value, indicating that there is no client
IP address associated with this LU, or an IPv4 address in the dotted
decimal form (for example, a.b.c.d).

tn3270ClientPortNumber
Syntax

CHOICE { noIpPort NULL, portNumber PrintableString(SIZE(1..5)
Meaning

The TN3270 client IP port number.
Source

The IP port number associated with TN3270 LU.
Operations

GET, SNAPSHOT (luCollection), NOTIFICATIONS
Attribute of

logicalUnit

This attribute returns either a PrintableString representation of an IP port
number between 1 and 65535 (decimal) inclusive, or a NULL value
indicating that there is no client IP port number associated with this LU.

transmissionGroupNumber
Syntax

CHOICE { integer INTEGER, uninitialized NULL }
Meaning

This attribute provides the TG number associated with the connection
provided by this logicalLink. If the TG number is unknown, (uninitialized
NULL) is provided.

Source
The TG number may be predefined with the TGN operand of the PU
statement in system definition or may be dynamically assigned if not
predefined. Not all PUs represented as logicalLinks will have TG numbers
(for example, PU T1). PUs or link stations with the TG defined as ANY,
where the TG number has not been negotiated, will return uninitialized
NULL.

Operations
GET

Attribute of
logicalLink

underlyingConnectionNames
Syntax

SET OF ObjectInstance
Meaning

For a port object, this is always the null set.

Attributes Definition

346 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

For a logicalLink object, this represents the port that the logicalLink is
subordinate to. If unknown, the null set is provided.

Source
For non-switched PUs, this is always the port object representing the LINE
that the physical unit is defined under. For switched PUs, this attribute will
not be known if the PU is not dialed.

Operations
GET

Attribute of

logicalLink
port

userLabel
Syntax

GraphicString
Meaning

For logicalUnit objects that represent VTAM applications, this attribute
contains the name of the application ACB. For CDRSC objects, this
attribute contains the name of the CDRSC LUALIAS name if coded. For all
other logicalUnit and CDRSC objects this attribute is the null string.

Source
VTAM applications define the ACB name on the ACBNAME operand of the
APPL statement in a VTAM application program major node. The CDRSC
LUALIAS name is coded on the LUALIAS operand of the CDRSC statement
for a predefined CDRSC.

Operations
GET, SNAPSHOT (luCollection)

Attribute of

CDRSC
logicalUnit

unknownStatus
Syntax

BOOLEAN
TRUE Unknown status
FALSE

Status is known

OCTET: X'00'= FALSE

X'01'= TRUE
X'FF'= no change

BOOLEAN is used for GET and NOTIFICATION operations.

OCTET is used for snapshot operations.
Meaning

OSI state unknown status.
Source

Determined from VTAM resource definition table entry (RDTE) finite state
machine (FSM) state or SNA control vector 45, subfield 80 depending on
resource type.

Attributes Definition

Appendix F. VTAM Topology Agent Attributes Definition 347

Operations
GET, SNAPSHOT (all types), NOTIFICATIONS

Attribute of
all objects except luGroup

usageState
Syntax

ENUMERATED { idle,

active,
busy }

OCTET: X'00'= idle

X'01'= active
X'02'= busy
X'FF'= no change

Meaning
OSI state usage state

Source
Determined from VTAM resource definition table entry (RDTE) finite state
machine (FSM) state or SNA control vector 45, subfield 80 depending on
resource type.

Operations
GET

Attribute of

appnNN
port
appnRegisteredLu
t2-1Node
t4Node
t5Node

Attributes Definition

348 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Appendix G. VTAMTOPO Filtering Option Reporting

Table 42 on page 349 summarizes the results of using the VTAMTOPO filtering
option for reporting a switched PU under an NCP.

The following is the legend for the table:

notIGNR/INCL
Neither IGNORE or INCLUDE specified.

r VTAMTOPO= not specified, REPORT inherited from node above.

R VTAMTOPO=REPORT specified (or NOLLINES at containing GROUP).

nr VTAMTOPO= not specified, NOREPORT inherited from node above.

NR VTAMTOPO=NOREPORT specified (or NOSWPUS at containing GROUP).

NotRep
Switched PU is not reported.

IGNR VTAMTOPO=IGNORE specified at designated major node.

INCL VTAMTOPO=INCLUDE specified at the designated major node.

any Value of VTAMTOPO= does not matter, inclusion not specified.

R-NCP
Switched PU is reported under the NCP under which the Switched PU is
connected.

R-SSCP
Switched PU is reported under the SSCP directly (not under any NCP), as it
is when it is not connected.

Notes:

1. Values shown are assumed to be set in the applicable major node, individual
PUX or SW PU before the connection is established. A MODIFY VTAMTOPO to
set these values after the connection is established may not show the expected
result before the connection is taken down and reestablished.

2. This table can also be used for the Switched PUs that are connected under an
XCA. In the results column, all R-NCP will be R-SSCP, since the XCA is not
represented by a PU type, and does not appear as a discrete node in SNA local
topology.

3. The PUX is a place holder for a future connected switched PU under the
switched line. It takes its VTAMTOPO value either explicitly from the line
GROUP value, or implicitly from the NCP or the XCA major node value. If its
VTAMTOPO value is explicitly set, it cannot be modified.

Table 42. Connected Switched PU Report

VTAMTOPO value on SPWU result

NCP PUX SWND SWPU

notIGNR/INCL r/R R r R-NCP

notIGNR/INCL r/R INCL r R-NCP

notIGNR/INCL r/R R R R-NCP

notIGNR/INCL r/R INCL R R-NCP

notIGNR/INCL r/R R NR NotRep

© Copyright IBM Corp. 1995, 2001 349

Table 42. Connected Switched PU Report (continued)

VTAMTOPO value on SPWU result

NCP PUX SWND SWPU

notIGNR/INCL r/R INCL NR R-NCP

notIGNR/INCL r/R NR nr R-NCP

notIGNR/INCL r/R IGNR nr R-NCP

notIGNR/INCL r/R NR NR NotRep

notIGNR/INCL r/R IGNR NR NotRep

notIGNR/INCL r/R NR R R-NCP

notIGNR/INCL r/R IGNR R R-NCP

notIGNR/INCL nr/NR R r R-SSCP

notIGNR/INCL nr/NR INCL r R-SSCP

notIGNR/INCL nr/NR R R R-NCP

notIGNR/INCL nr/NR INCL R R-SSCP

notIGNR/INCL nr/NR R NR NotRep

notIGNR/INCL nr/NR INCL NR R-SSCP

notIGNR/INCL nr/NR NR nr NotRep

notIGNR/INCL nr/NR IGNR nr NotRep

notIGNR/INCL nr/NR NR NR NotRep

notIGNR/INCL nr/NR IGNR NR NotRep

notIGNR/INCL nr/NR NR R R-NCP

notIGNR/INCL nr/NR IGNR R NotRep

INCL any R r R-NCP

INCL any INCL r R-NCP

INCL any R R R-NCP

INCL any INCL R R-NCP

INCL any R NR NotRep

INCL any INCL NR R-NCP

INCL any NR nr R-NCP

INCL any IGNR nr R-NCP

INCL any NR NR NotRep

INCL any IGNR NR NotRep

INCL any NR R R-NCP

INCL any IGNR R R-NCP

IGNR any R r R-SSCP

IGNR any INCL r R-SSCP

IGNR any R R R-SSCP

IGNR any INCL R R-SSCP

IGNR any R NR NotRep

IGNR any INCL NR R-SSCP

IGNR any NR nr NotRep

IGNR any IGNR nr NotRep

350 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Table 42. Connected Switched PU Report (continued)

VTAMTOPO value on SPWU result

NCP PUX SWND SWPU

IGNR any NotRep NotRep NotRep

IGNR any IGNR NR NotRep

IGNR any NR R R-SSCP

IGNR any IGNR R NotRep

Appendix G. VTAMTOPO Filtering Option Reporting 351

352 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Appendix H. Information Apars

This appendix lists information apars for IP and SNA books.

Notes:

1. Information apars contain updates to previous editions of the manuals listed
below. Books updated for V1R2 are complete except for the updates contained
in the information apars that may be issued after V1R2 books went to press.

2. Information apars are predefined for z/OS V1R2 Communications Server and
may not contain updates.

IP Information Apars
Table 43 lists information apars for IP books.

Table 43. IP Information Apars

Title z/OS CS
V1R2

CS for
OS/390 2.10

and

z/OS CS
V1R1

CS for
OS/390 2.8

CS for
OS/990 2.7

CS for
OS/390 2.6

CS for
OS/390 2.5

IP API Guide ii12861 ii12371 ii11635 ii11558 ii11405 ii11144

IP CICS Sockets
Guide

ii12862 ii11626 ii11559 ii11406 ii11145

IP Configuration ii11620
ii12068
ii12353
ii12649

ii11555
ii11637
ii11995
ii12325

ii11402
ii11619
ii12066
ii12455

ii11159
ii11979
ii12315

IP Configuration Guide ii12498 ii12362
ii12493

IP Configuration
Reference

ii12499 ii12363
ii12494
ii12712

IP Diagnosis ii12503 ii12366
ii12495

ii11628 ii11565 ii11411 ii11160
ii11414

IP Messages Volume
1

ii12857 ii12367 ii11630 ii11562 ii11408 ii11636

IP Messages Volume
2

ii12858 ii12368 ii11631 ii11563 ii11409 ii11281

IP Messages Volume
3

ii12859 ii12369 ii11632
ii12883

ii11564
ii12884

ii11410
ii12885

ii11158

IP Messages Volume
4

ii12860

IP Migration ii12497 ii12361 ii11618 ii11554 ii11401 ii11204

IP Network Print
Facility

ii12864 ii11627 ii11561 ii11407 ii11150

IP Programmer’s
Reference

ii12505 ii11634 ii11557 ii11404 ii12496

© Copyright IBM Corp. 1995, 2001 353

Table 43. IP Information Apars (continued)

Title z/OS CS
V1R2

CS for
OS/390 2.10

and

z/OS CS
V1R1

CS for
OS/390 2.8

CS for
OS/990 2.7

CS for
OS/390 2.6

CS for
OS/390 2.5

IP and SNA Codes ii12504 ii12370 ii11917 Added
TCP/IP codes
to VTAM
codes V2R6
ii11611

ii11361 ii11146
ii11097

IP User’s Guide ii12365 ii11625 ii11556 ii11403 ii11143

IP User’s Guide and
Commands

ii12501

IP System Admin
Guide

ii12502

Quick Reference ii12500 ii12364

SNA Information Apars
Table 44 lists information apars for SNA books.

Table 44. SNA Information Apars

Title z/OS CS
V1R2

CS for
OS/390 2.10

and z/OS
CS V1R1

CS for
OS/390 2.8

CS for
OS/390 2.7

CS for
OS/390 2.6

CS for
OS/390 2.5

Anynet SNA over TCP/IP ii11922 ii11633 ii11624 ii11623

Anynet Sockets over SNA ii11921 ii11622 ii11519 ii11518

CSM Guide

IP and SNA Codes ii12370 ii11917 ii11611 ii11361 ii11097

SNA Customization ii12872 ii12388 ii11923 ii11925
ii12008

ii11924
ii12007

ii11092
ii11621
ii12006

SNA Diagnosis ii12490 ii12389 ii11915 ii11615 ii11357 ii11585

SNA Messages ii12491 ii12382 ii11916 ii11610 ii11358 ii11096

SNA Network
Implementation Guide

ii12487 ii12381 ii11911 ii11609
ii12683

ii11353
ii11493

ii11095

SNA Operation ii12489 ii12384 ii11914 ii11612 ii11355 ii11098

SNA Migration ii12486 ii12386 ii11910 ii11614 ii11359 ii11100

SNA Programming ii12385 ii11920 ii11613 ii11360 ii11099

Quick Reference ii12500 ii12364 ii11913 ii11616 ii11356

SNA Resource Definition
Reference

ii12488 ii12380
ii12567

ii11912
ii12568

ii11608
ii12569

ii11354
ii12259
ii12570

ii11094
ii11151
ii12260
ii12571

SNA Resource Definition
Samples

354 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Appendix I. Notices

IBM may not offer all of the products, services, or features discussed in this
document. Consult your local IBM representative for information on the products
and services currently available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and verify the operation
of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 1995, 2001 355

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

Site Counsel
IBM Corporation
P.O.Box 12195
3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly

356 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

This product includes cryptographic software written by Eric Young.

If you are viewing this information softcopy, photographs and color illustrations may
not appear.

You can obtain softcopy from the z/OS Collection (SK3T-4269), which contains
BookManager and PDF formats of unlicensed books and the z/OS Licensed
Product Library (LK3T-4307), which contains BookManager and PDF formats of
licensed books.

Programming Interface Information
This publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of z/OS Communications Server.

Appendix I. Notices 357

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

ACF/VTAM
Advanced Peer-to-Peer Networking
AFP
AD/Cycle
AIX
AIX/ESA
AnyNet
APL2
APPN
AS/400
AT
BookManager
BookMaster
CBPDO
C/370
CICS
CICS/ESA
C/MVS
Common User Access
C Set ++
CT
CUA
DATABASE 2
DatagLANce
DB2
DFSMS
DFSMSdfp
DFSMShsm
DFSMS/MVS
DPI
Domino
DRDA
eNetwork
Enterprise Systems Architecture/370
ESA/390
ESCON
Eserver
ES/3090
ES/9000
ES/9370
EtherStreamer
Extended Services
FAA

Micro Channel
MVS
MVS/DFP
MVS/ESA
MVS/SP
MVS/XA
MQ
Natural
NetView
Network Station
Nways
Notes
NTune
NTuneNCP
OfficeVision/MVS
OfficeVision/VM
Open Class
OpenEdition
OS/2
OS/390
OS/400
Parallel Sysplex
Personal System/2
PR/SM
PROFS
PS/2
RACF
Resource Link
Resource Measurement Facility
RETAIN
RFM
RISC System/6000
RMF
RS/6000
S/370
S/390
SAA
SecureWay
Slate
SP
SP2
SQL/DS
System/360

358 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

FFST
FFST/2
FFST/MVS
First Failure Support Technology
GDDM
Hardware Configuration Definition
IBM
IBMLink
IBMLINK
IMS
IMS/ESA
InfoPrint
Language Environment
LANStreamer
Library Reader
LPDA
MCS

System/370
System/390
SystemView
Tivoli
TURBOWAYS
UNIX System Services
Virtual Machine/Extended Architecture
VM/ESA
VM/XA
VSE/ESA
VTAM
WebSphere
XT
z/Architecture
z/OS
zSeries
400
3090
3890

Lotus, Freelance, and Word Pro are trademarks of Lotus Development Corporation
in the United States, or other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States, or
other countries, or both.

DB2 and NetView are registered trademarks of International Business Machines
Corporation or Tivoli Systems Inc. in the U.S., other countries, or both.

The following terms are trademarks of other companies:

ATM is a trademark of Adobe Systems, Incorporated.

BSC is a trademark of BusiSoft Corporation.

CSA is a trademark of Canadian Standards Association.

DCE is a trademark of The Open Software Foundation.

HYPERchannel is a trademark of Network Systems Corporation.

UNIX is a registered trademark in the United States, other countries, or both and is
licensed exclusively through X/Open Company Limited.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ActionMedia, LANDesk, MMX, Pentium, and ProShare are trademarks of Intel
Corporation in the United States, other countries, or both. For a complete list of
Intel trademarks, see http://www.intel.com/tradmarx.htm.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix I. Notices 359

http://www.intel.com/tradmarx.htm

360 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Index

A
abort association string 137
ACF. strings

description 133
ending associations 137
getting association information 138
registering an application entity 135
starting associations 136
subscribing to association information 133
unsubscribing to association information 133

ACF.Abort 137
ACF.Associate 136
ACF.AssociateRsp 136
ACF.GetAssociationInfo 138
ACF.RegisterAE 135
ACF.RegisterRsp 135
ACF.Release 137
ACF strings, syntax

ACF.Abort 138
ACF.Associate 137
ACF.AssociateRsp 137
ACF.GetAssociationInfo 138
ACF.RegisterAE 136
ACF.RegisterRsp 136
ACF.Release 138
ACF.Subscribe 133
ACF.SubscribeMess 133
ACF.SubscribeRsp 133
ACF.SubscribeState 133
ACF.UnSubscribe 133

ACF.Subscribe 133
ACF.SubscribeMess 133
ACF.SubscribeRsp 133
ACF.SubscribeState 133
ACF.UnSubscribe 133
actions, OSI

collecting information with ACTION
description 165
initial data 168
merging updates 170
request 165
response 166
termination 171
update data 169

description 161
operations specifying with CMIP verbs

ACTION operation 162
CANCEL-GET operation 162
DELETE operation 162
description 161
EVENT-REPORT 162
GET operation 161
other operations 162
SET operation 162

types of CMIP responses
ACTION ROIV, responding to 164
CANCEL-GET, responding to 164

actions, OSI (continued)
types of CMIP responses (continued)

DELETE messages 164
description 163
EVENT-REPORT messages 164
GET ROIV, responding to 164
ROER message 163
ROIV message 163
RORS message 163
SET messages 164

agent, introduction to VTAM topology 149
allomorphs array parameter

MIBSendRegister 80
allomorphs count parameter

MIBSendRegister 80
API functions

error messages 54
overview 53
table of 53

API functions, CMIP services
application program characteristics 44
common storage area (CSA) interface 41
CSA versus data space 43
data space interface 41
message formatting for API 45

API header 45
parameters, API header 46
string header 48
types of string messages 48

overview 41
API functions, details

coding, general 53
completion information, general 54
descriptions, general 53
synchronous and asynchronous 55

API level parameter
MIBConnect 56

api_version parameter
API header 47

application ACB name parameter
MIBConnect 57

application program, sample CMIP 19
application program interface, CMIP0

application program characteristics 44
common storage area (CSA) interface 41
CSA versus data space 43
data space interface 41
message formatting for API 45

API header 45
parameters, API header 46
string header 48
types of string messages 48

overview 41
application-to-application security

associationKey attribute 143
description 143
directory definition file 143
ending associations 144

© Copyright IBM Corp. 1995, 2001 361

application-to-application security (continued)
establishing 143
figure 144
securityInfo attribute 144

argument parameter
MIBSendCmipRequest 70
MIBSendCmipResponse 74

argument type parameter
MIBSendCmipRequest 70
MIBSendCmipResponse 73

ASN.1 syntax for ACF strings
ACF.Abort 138
ACF.Associate 137
ACF.AssociateRsp 137
ACF.GetAssociationInfo 138
ACF.RegisterAE 136
ACF.RegisterRsp 136
ACF.Release 138
ACF.Subscribe 133
ACF.SubscribeMess 133
ACF.SubscribeRsp 133
ACF.SubscribeState 133
ACF.UnSubscribe 133

ASN.1 syntax for CMIP strings 121
ASN.1 syntax for request strings 122
associate response string 136
associate string 136
association security

associationKey attribute 143
description 143
directory definition file 143
ending associations 144
establishing 143
figure 144
securityInfo attribute 144

asynchronous registration function
declarations 79
example in application program 81
parameters 80
purpose 79
return codes 80

B
basic interface 41
building CMIP strings

constructed ASN.1 types
description 112
SEQUENCE 113
SEQUENCE OF 114
SET 114
SET OF 114

create requests 129
decision types

ANY 117
ANY DEFINED BY 116
CHOICE 115
description 115

delete requests 130
description of 95

building CMIP strings (continued)
formatting data for CMIP services

ASN.1 value 97
constructed value 99
description 95
explicit value 97
hexadecimal BER 100
MIB variable 98

primitive ASN.1 data types
BIT STRING 105
BOOLEAN 101
character string 109
description 101
ENUMERATED 103
INTEGER 102
NULL 107
OBJECT IDENTIFIER 108
OCTET STRING 106
REAL 104
time type 112

C
capability flags parameter

MIBSendRegister 80
classes, VTAM resources and object

description 151
naming objects 152
object classes 151
object states 155
resources to OSI object classes, mapping 152
VTAM status to OSI states, mapping

for VTAM resources with VTAM status 157
for VTAM resources without VTAM status 158

CLOSE ACB error value parameter
MIBDisconnect 67

CMIP API, function details
coding, general 53
completion information, general 54
descriptions, general 53
synchronous and asynchronous 55

CMIP application program, sample 19
CMIP messages, types of 121
CMIP operations

collecting information with ACTION
description 165
initial data 168
merging updates 170
request 165
response 166
termination 171
update data 169

description 161
operations specifying with CMIP verbs

ACTION operation 162
CANCEL-GET operation 162
DELETE operation 162
description 161
EVENT-REPORT 162
GET operation 161
other operations 162

362 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

CMIP operations (continued)
operations specifying with CMIP verbs (continued)

SET operation 162
types of CMIP responses

ACTION ROIV, responding to 164
CANCEL-GET, responding to 164
DELETE messages 164
description 163
EVENT-REPORT messages 164
GET ROIV, responding to 164
ROER message 163
ROIV message 163
RORS message 163
SET messages 164

CMIP request function
declarations 70
example in application program 72
parameters 70
purpose 70
return codes 71

CMIP response function
declarations 73
example in application program 75
parameters 73
purpose 73
return codes 74

CMIP services
associations, managing 9
create handlers 13
events, filtering 7
events, routing 7
manager applications, special considerations 13
objects, locating 6
objects, registering 6
overview 5
parameters, CMIP 11
PDUs, managing 10
requirements for application programs 11
scoped requests, replicating 7
security, providing 9
subtree managers 12
traffic, coordinating 7
verbs, CMIP 11

CMIP services API functions
application program characteristics 44
coding, general 53
common storage area (CSA) interface 41
completion information, general 54
CSA versus data space 43
data space interface 41
descriptions, general 53
error messages 54
message formatting for API 45

API header 45
parameters, API header 46
string header 48
types of string messages 48

overview 41, 53
synchronous and asynchronous 55
table of 53

CMIP services to CMIP services security 143

CMIP strings, building
constructed ASN.1 types

description 112
SEQUENCE 113
SEQUENCE OF 114
SET 114
SET OF 114

create requests 129
decision types

ANY 117
ANY DEFINED BY 116
CHOICE 115
description 115

delete requests 130
description of 95
formatting data for CMIP services

ASN.1 value 97
constructed value 99
description 95
explicit value 97
hexadecimal BER 100
MIB variable 98

primitive ASN.1 data types
BIT STRING 105
BOOLEAN 101
character string 109
description 101
ENUMERATED 103
INTEGER 102
NULL 107
OBJECT IDENTIFIER 108
OCTET STRING 106
REAL 104
time type 112

CMIP strings, examples 121
Common Management Information Protocol (CMIP)

Services
associations, managing 9
create handlers 13
events, filtering 7
events, routing 7
manager applications, special considerations 13
objects, locating 6
objects, registering 6
overview 5
parameters, CMIP 11
PDUs, managing 10
requirements for application programs 11
scoped requests, replicating 7
security, providing 9
subtree managers 12
traffic, coordinating 7
verbs, CMIP 11

common storage area (CSA) interface 41
common storage area versus data space 43
comparison between

ASN1, definition 4
basic encoding rules (BER) 5
CMIP services and local applications 4
CMIP services and remote applications 5

Index 363

confirmation message
destination and source table 48

confirmation strings, examples 122
connect identifier parameter

API header 48
connection function

declarations 56
example in application program 65
parameters 56
purpose 56
return codes 63

connection options parameter
MIBConnect 63

constructing CMIP strings
constructed ASN.1 types

description 112
SEQUENCE 113
SEQUENCE OF 114
SET 114
SET OF 114

create requests 129
decision types

ANY 117
ANY DEFINED BY 116
CHOICE 115
description 115

delete requests 130
description of 95
formatting data for CMIP services

ASN.1 value 97
constructed value 99
description 95
explicit value 97
hexadecimal BER 100
MIB variable 98

primitive ASN.1 data types
BIT STRING 105
BOOLEAN 101
character string 109
description 101
ENUMERATED 103
INTEGER 102
NULL 107
OBJECT IDENTIFIER 108
OCTET STRING 106
REAL 104
time type 112

create handlers array parameter
MIBSendRegister 80

create handlers count parameter
MIBSendRegister 80

creating CMIP strings
constructed ASN.1 types

description 112
SEQUENCE 113
SEQUENCE OF 114
SET 114
SET OF 114

create requests 129
decision types

ANY 117

creating CMIP strings (continued)
decision types (continued)

ANY DEFINED BY 116
CHOICE 115
description 115

delete requests 130
description of 95
formatting data for CMIP services

ASN.1 value 97
constructed value 99
description 95
explicit value 97
hexadecimal BER 100
MIB variable 98

primitive ASN.1 data types
BIT STRING 105
BOOLEAN 101
character string 109
description 101
ENUMERATED 103
INTEGER 102
NULL 107
OBJECT IDENTIFIER 108
OCTET STRING 106
REAL 104
time type 112

CSA interface 41
CSA versus data space 43

D
data for specific resources

data, requesting specific resource (GET)
data 223
description 219
example 223
overview 219
request 219
response 222

data, requesting specific resource (logicalUnitIndex)
action request 224
action termination 226
initial data 225
overview 224
snapshot data 226
snapshot example 227

data space interface 41
data space vector length parameter

MIBConnect 62
data space vector parameter

MIBConnect 62
data space versus common storage area 41, 43
definition file, directory 143
deregistration function

declarations 77
example in application program 78
parameters 77
purpose 77
return codes 77

DES-based security 143
description, VTAM topology agent 149

364 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

destination association handle parameter
MIBSendCmipResponse 74
MIBSendResponse 85

destination parameter
MIBSendCmipRequest 70

destination type parameter
MIBSendCmipRequest 70

directory definition file 143
disconnection function

declarations 67
example in application program 69
parameters 67
purpose 67
return codes 68

distinguished name parameter
MIBSendDeleteRegistration 77
MIBSendRegister 80

E
end association string 137
examples of CMIP strings 121
examples of request strings 122
exit routine, read queue

common storage area, for
description 87
length of string 89
parameter list 89
registers upon entry 88
registers upon termination 88
return code 88
string header, address 89

data spaces, for
description 89
parameter list 90
reason code 89, 90
registers upon entry 90
registers upon termination 90

description 87

F
function details, CMIP API

coding, general 53
completion information, general 54
descriptions, general 53
synchronous and asynchronous 55

functions, CMIP API
application program characteristics 44
common storage area (CSA) interface 41
CSA versus data space 43
data space interface 41
error messages 54
message formatting for API 45

API header 45
parameters, API header 46
string header 48
types of string messages 48

overview 41, 53
table of 53

G
get association information string 138

H
how VTAM-specific requests and responses are used

ACF.Abort 138
ACF.Associate 137
ACF.AssociateRsp 137
ACF.GetAssociationInfo 139
ACF.RegisterAE 136
ACF.RegisterRsp 136
ACF.Release 138
ACF.Subscribe 135
ACF.SubscribeMess 135
ACF.SubscribeRsp 135
ACF.SubscribeState 135
ACF.UnSubscribe 135
description 133

I
indication message

destination and source table 48
indication strings, examples 122
information for specific resources

data, requesting specific resource (GET)
data 223
description 219
example 223
overview 219
request 219
response 222

data, requesting specific resource (logicalUnitIndex)
action request 224
action termination 226
initial data 225
overview 224
snapshot data 226
snapshot example 227

interface, CSA versus data space 43
interface, storage 41
invoke identifier

MIBSendCmipResponse 73
MIBSendResponse 85

invoke identifier parameter
API header 48

L
last in chain parameter

MIBSendCmipResponse 73
link identifier parameter

MIBConnect 56
MIBDisconnect 67
MIBSendCmipRequest 70
MIBSendCmipResponse 73
MIBSendDeleteRegistration 77
MIBSendRegister 80
MIBSendRequest 83

Index 365

link identifier parameter (continued)
MIBSendResponse 85

local identifier length parameter
MIBConnect 63

local identifier parameter
MIBSendCmipRequest 70
MIBSendCmipResponse 74
MIBSendDeleteRegistration 77
MIBSendRegister 80
MIBSendRequest 83
MIBSendResponse 85

local identifiers
API header 48

M
maximum outstanding invoke identifiers parameter

MIBConnect 56
message parameter

MIBSendRequest 83
MIBSendResponse 85

message types 121
MIB. strings

description 133
ending associations 137
getting association information 138
registering an application entity 135
starting associations 136
subscribing to association information 133
unsubscribing to association information 133

MIB asynchronous registration function
declarations 79
example in application program 81
parameters 80
purpose 79
return codes 80

MIB queue request function
declarations 83
example in application program 84
parameters 83
purpose 83
return codes 83

MIB queue response function
declarations 85
example in application program 86
parameters 85
purpose 85
return codes 85

MIBConnect function
declarations 56
example in application program 65
parameters 56
purpose 56
return codes 63

MIBDisconnect function
declarations 67
example in application program 69
parameters 67
purpose 67
return codes 68

MIBSendCmipRequest function
declarations 70
example in application program 72
parameters 70
purpose 70
return codes 71

MIBSendCmipResponse function
declarations 73
example in application program 75
parameters 73
purpose 73
return codes 74

MIBSendDeleteRegistration function
declarations 77
example in application program 78
parameters 77
purpose 77
return codes 77

MIBSendRegister function
declarations 79
example in application program 81
parameters 80
purpose 79
return codes 80

MIBSendRequest function
declarations 83
example in application program 84
parameters 83
purpose 83
return codes 83

MIBSendResponse function
declarations 85
example in application program 86
parameters 85
purpose 85
return codes 85

monitoring VTAM topology
data, monitoring LU

action request 207
action termination 210
description 206
initial data 208
overview 206
snapshot data 210
snapshot example 211
update data response 208

data, monitoring network
action request 173
action termination 175
description 173
initial data 174
overview 173
snapshot data for APPN 176
snapshot data for subarea 177
snapshot example 179
update data response 174

resources, monitoring through reports
creation of 213
data, event-report 215
description 213
environment 213

366 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

monitoring VTAM topology (continued)
resources, monitoring through reports (continued)

example 217
manager, reporting to 214
overview 213

topology, monitoring local
action request 187
action termination 191
description 185
initial data 188
overview 186
snapshot data 192
snapshot example 197
update data response 189

msg_type parameter
API header 46

N
name binding object identifier parameter

MIBSendRegister 80
name type parameter

MIBSendRegister 80
network and resource monitoring

data, monitoring LU
action request 207
action termination 210
description 206
initial data 208
overview 206
snapshot data 210
snapshot example 211
update data response 208

data, monitoring network
action request 173
action termination 175
description 173
initial data 174
overview 173
snapshot data for APPN 176
snapshot data for subarea 177
snapshot example 179
update data response 174

resources, monitoring through reports
creation of 213
data, event-report 215
description 213
environment 213
example 217
manager, reporting to 214
overview 213

topology, monitoring local
action request 187
action termination 191
description 185
initial data 188
overview 186
snapshot data 192
snapshot example 197
update data response 189

number of local identifiers parameter
API header 48

O
object class parameter

MIBSendRegister 80
object classes and VTAM resources

description 151
naming objects 152
object classes 151
object states 155
resources to OSI object classes, mapping 152
VTAM status to OSI states, mapping

for VTAM resources with VTAM status 157
for VTAM resources without VTAM status 158

object orientation
class, definition 4
description 3
inheritance, definition 4
instance, definition 4
object, definition 4

object-oriented view
class, definition 4
description 3
inheritance, definition 4
instance, definition 4
object, definition 4

OO
class, definition 4
description 3
inheritance, definition 4
instance, definition 4
object, definition 4

OPEN ACB error value parameter
MIBConnect 58

operations, OSI
collecting information with ACTION

description 165
initial data 168
merging updates 170
request 165
response 166
termination 171
update data 169

description 161
operations specifying with CMIP verbs

ACTION operation 162
CANCEL-GET operation 162
DELETE operation 162
description 161
EVENT-REPORT 162
GET operation 161
other operations 162
SET operation 162

types of CMIP responses
ACTION ROIV, responding to 164
CANCEL-GET, responding to 164
DELETE messages 164
description 163
EVENT-REPORT messages 164

Index 367

operations, OSI (continued)
types of CMIP responses (continued)

GET ROIV, responding to 164
ROER message 163
ROIV message 163
RORS message 163
SET messages 164

origin parameter
API header 47

OSI object classes
description 151
naming objects 152
object classes 151
object states 155
resources to OSI object classes, mapping 152
VTAM status to OSI states, mapping

for VTAM resources with VTAM status 157
for VTAM resources without VTAM status 158

OSI operations
collecting information with ACTION

description 165
initial data 168
merging updates 170
request 165
response 166
termination 171
update data 169

description 161
operations specifying with CMIP verbs

ACTION operation 162
CANCEL-GET operation 162
DELETE operation 162
description 161
EVENT-REPORT 162
GET operation 161
other operations 162
SET operation 162

types of CMIP responses
ACTION ROIV, responding to 164
CANCEL-GET, responding to 164
DELETE messages 164
description 163
EVENT-REPORT messages 164
GET ROIV, responding to 164
ROER message 163
ROIV message 163
RORS message 163
SET messages 164

overview, VTAM topology agent 149

P
password parameter

MIBConnect 62
PING, sample CMIP application 19
program, sample CMIP application 19
program-to-program security

associationKey attribute 143
description 143
directory definition file 143
ending associations 144

program-to-program security (continued)
establishing 143
figure 144
securityInfo attribute 144

purpose of VTAM-specific requests and responses
ACF.Abort 138
ACF.Associate 137
ACF.AssociateRsp 137
ACF.GetAssociationInfo 139
ACF.RegisterAE 136
ACF.RegisterRsp 136
ACF.Release 138
ACF.Subscribe 135
ACF.SubscribeMess 135
ACF.SubscribeRsp 135
ACF.SubscribeState 135
ACF.UnSubscribe 135
description 133

Q
queue request function

declarations 83
example in application program 84
parameters 83
purpose 83
return codes 83

queue response function
declarations 85
example in application program 86
parameters 85
purpose 85
return codes 85

R
read queue exit routine

common storage area, for
description 87
length of string 89
parameter list 89
registers upon entry 88
registers upon termination 88
return code 88
string header, address 89

data spaces, for
description 89
parameter list 90
reason code 89, 90
registers upon entry 90
registers upon termination 90

description 87
read queue exit routine pointer parameter

MIBConnect 57
register application entity string 135
register response string 135
relationship between

ASN1, definition 4
basic encoding rules (BER) 5
CMIP services and local applications 4
CMIP services and remote applications 5

368 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

release association string 137
request function, CMIP

declarations 70
example in application program 72
parameters 70
purpose 70
return codes 71

request message
destination and source table 48

request strings, examples 122
requesting specific resource data

data, requesting specific resource (GET)
data 223
description 219
example 223
overview 219
request 219
response 222

data, requesting specific resource (logicalUnitIndex)
action request 224
action termination 226
initial data 225
overview 224
snapshot data 226
snapshot example 227

requests, scoped 7
requests, VTAM-specific, how used

ACF.Abort 138
ACF.Associate 137
ACF.AssociateRsp 137
ACF.GetAssociationInfo 139
ACF.RegisterAE 136
ACF.RegisterRsp 136
ACF.Release 138
ACF.Subscribe 135
ACF.SubscribeMess 135
ACF.SubscribeRsp 135
ACF.SubscribeState 135
ACF.UnSubscribe 135
description 133

requests and responses, VTAM-specific
description 133
ending associations 137
getting association information 138
registering an application entity 135
starting associations 136
subscribing to association information 133
unsubscribing to association information 133

resources, data for specific
data, requesting specific resource (GET)

data 223
description 219
example 223
overview 219
request 219
response 222

data, requesting specific resource (logicalUnitIndex)
action request 224
action termination 226
initial data 225
overview 224

resources, data for specific (continued)
data, requesting specific resource (logicalUnitIndex)

(continued)
snapshot data 226
snapshot example 227

resources and OSI object classes, VTAM
description 151
naming objects 152
object classes 151
object states 155
resources to OSI object classes, mapping 152
VTAM status to OSI states, mapping

for VTAM resources with VTAM status 157
for VTAM resources without VTAM status 158

response function, CMIP
declarations 73
example in application program 75
parameters 73
purpose 73
return codes 74

response function, MIB queue
declarations 85
example in application program 86
parameters 85
purpose 85
return codes 85

response message
destination and source table 48

response strings, examples 122
responses, VTAM-specific, how used

ACF.Abort 138
ACF.Associate 137
ACF.AssociateRsp 137
ACF.GetAssociationInfo 139
ACF.RegisterAE 136
ACF.RegisterRsp 136
ACF.Release 138
ACF.Subscribe 135
ACF.SubscribeMess 135
ACF.SubscribeRsp 135
ACF.SubscribeState 135
ACF.UnSubscribe 135
description 133

responses and requests, VTAM-specific
description 133
ending associations 137
getting association information 138
registering an application entity 135
starting associations 136
subscribing to association information 133
unsubscribing to association information 133

result code
API header 48

returned invoke identifier parameter
MIBSendCmipRequest 71
MIBSendCmipResponse 74
MIBSendDeleteRegistration 77
MIBSendRegister 80
MIBSendRequest 83

Index 369

routine, read queue exit
common storage area, for

description 87
length of string 89
parameter list 89
registers upon entry 88
registers upon termination 88
return code 88
string header, address 89

data spaces, for
description 89
parameter list 90
reason code 89, 90
registers upon entry 90
registers upon termination 90

description 87
rules for CMIP strings

constructed ASN.1 types
description 112
SEQUENCE 113
SEQUENCE OF 114
SET 114
SET OF 114

create requests 129
decision types

ANY 117
ANY DEFINED BY 116
CHOICE 115
description 115

delete requests 130
description of 95
formatting data for CMIP services

ASN.1 value 97
constructed value 99
description 95
explicit value 97
hexadecimal BER 100
MIB variable 98

primitive ASN.1 data types
BIT STRING 105
BOOLEAN 101
character string 109
description 101
ENUMERATED 103
INTEGER 102
NULL 107
OBJECT IDENTIFIER 108
OCTET STRING 106
REAL 104
time type 112

S
sample CMIP application program 19
samples of CMIP strings 121
scoped requests 7
secure associations

associationKey attribute 143
description 143
directory definition file 143
ending associations 144

secure associations (continued)
establishing 143
figure 144
securityInfo attribute 144

security
associationKey attribute 143
description 143
directory definition file 143
ending associations 144
establishing 143
figure 144
securityInfo attribute 144

SMAE name buffer parameter
MIBConnect 57

SMAE name buffer size parameter
MIBConnect 57

source parameter
MIBSendCmipRequest 70
MIBSendCmipResponse 74
MIBSendResponse 85

specific monitoring capabilities
data, monitoring LU

action request 207
action termination 210
description 206
initial data 208
overview 206
snapshot data 210
snapshot example 211
update data response 208

data, monitoring network
action request 173
action termination 175
description 173
initial data 174
overview 173
snapshot data for APPN 176
snapshot data for subarea 177
snapshot example 179
update data response 174

resources, monitoring through reports
creation of 213
data, event-report 215
description 213
environment 213
example 217
manager, reporting to 214
overview 213

topology, monitoring local
action request 187
action termination 191
description 185
initial data 188
overview 186
snapshot data 192
snapshot example 197
update data response 189

specific requests and responses, VTAM-
description 133
ending associations 137
getting association information 138

370 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

specific requests and responses, VTAM- (continued)
registering an application entity 135
starting associations 136
subscribing to association information 133
unsubscribing to association information 133

specific resource data, requesting
data, requesting specific resource (GET)

data 223
description 219
example 223
overview 219
request 219
response 222

data, requesting specific resource (logicalUnitIndex)
action request 224
action termination 226
initial data 225
overview 224
snapshot data 226
snapshot example 227

standard CMIP strings, rules for
constructed ASN.1 types

description 112
SEQUENCE 113
SEQUENCE OF 114
SET 114
SET OF 114

create requests 129
decision types

ANY 117
ANY DEFINED BY 116
CHOICE 115
description 115

delete requests 130
description of 95
formatting data for CMIP services

ASN.1 value 97
constructed value 99
description 95
explicit value 97
hexadecimal BER 100
MIB variable 98

primitive ASN.1 data types
BIT STRING 105
BOOLEAN 101
character string 109
description 101
ENUMERATED 103
INTEGER 102
NULL 107
OBJECT IDENTIFIER 108
OCTET STRING 106
REAL 104
time type 112

storage, CSA versus data space 41, 43
strings, building CMIP

constructed ASN.1 types
description 112
SEQUENCE 113
SEQUENCE OF 114
SET 114

strings, building CMIP (continued)
constructed ASN.1 types (continued)

SET OF 114
create requests 129
decision types

ANY 117
ANY DEFINED BY 116
CHOICE 115
description 115

delete requests 130
description of 95
formatting data for CMIP services

ASN.1 value 97
constructed value 99
description 95
explicit value 97
hexadecimal BER 100
MIB variable 98

primitive ASN.1 data types
BIT STRING 105
BOOLEAN 101
character string 109
description 101
ENUMERATED 103
INTEGER 102
NULL 107
OBJECT IDENTIFIER 108
OCTET STRING 106
REAL 104
time type 112

strings, CMIP examples 121
strings, examples for request 122
subscribe message string 133
subscribe response string 133
subscribe state string 133
subscribe string 133
success parameter

MIBSendCmipResponse 73
syntax for CMIP strings 121
syntax for request strings 122
syntax of ACF strings

ACF.Abort 138
ACF.Associate 137
ACF.AssociateRsp 137
ACF.GetAssociationInfo 138
ACF.RegisterAE 136
ACF.RegisterRsp 136
ACF.Release 138
ACF.Subscribe 133
ACF.SubscribeMess 133
ACF.SubscribeRsp 133
ACF.SubscribeState 133
ACF.UnSubscribe 133

system object name buffer parameter
MIBConnect 58

system object name buffer size parameter
MIBConnect 58

system to system security 143

Index 371

T
timestamp parameter

API header 48
topology agent, introduction 149
topology monitoring, VTAM

data, monitoring LU
action request 207
action termination 210
description 206
initial data 208
overview 206
snapshot data 210
snapshot example 211
update data response 208

data, monitoring network
action request 173
action termination 175
description 173
initial data 174
overview 173
snapshot data for APPN 176
snapshot data for subarea 177
snapshot example 179
update data response 174

resources, monitoring through reports
creation of 213
data, event-report 215
description 213
environment 213
example 217
manager, reporting to 214
overview 213

topology, monitoring local
action request 187
action termination 191
description 185
initial data 188
overview 186
snapshot data 192
snapshot example 197
update data response 189

TPEND routine pointer parameter
MIBConnect 57

types of messages 121

U
unSubscribe string 133
use of VTAM-specific requests and responses

ACF.Abort 138
ACF.Associate 137
ACF.AssociateRsp 137
ACF.GetAssociationInfo 139
ACF.RegisterAE 136
ACF.RegisterRsp 136
ACF.Release 138
ACF.Subscribe 135
ACF.SubscribeMess 135
ACF.SubscribeRsp 135
ACF.SubscribeState 135

use of VTAM-specific requests and responses
(continued)

ACF.UnSubscribe 135
description 133

user data parameter
MIBConnect 58

V
VTAM release level parameter

MIBConnect 61
VTAM resources and OSI object classes

description 151
naming objects 152
object classes 151
object states 155
resources to OSI object classes, mapping 152
VTAM status to OSI states, mapping

for VTAM resources with VTAM status 157
for VTAM resources without VTAM status 158

VTAM-specific requests and responses
description 133
ending associations 137
getting association information 138
registering an application entity 135
starting associations 136
subscribing to association information 133
unsubscribing to association information 133

VTAM-specific requests and responses, how used
ACF.Abort 138
ACF.Associate 137
ACF.AssociateRsp 137
ACF.GetAssociationInfo 139
ACF.RegisterAE 136
ACF.RegisterRsp 136
ACF.Release 138
ACF.Subscribe 135
ACF.SubscribeMess 135
ACF.SubscribeRsp 135
ACF.SubscribeState 135
ACF.UnSubscribe 135
description 133

VTAM-specific requests and responses, syntax
ACF.Abort 138
ACF.Associate 137
ACF.AssociateRsp 137
ACF.GetAssociationInfo 138
ACF.RegisterAE 136
ACF.RegisterRsp 136
ACF.Release 138
ACF.Subscribe 133
ACF.SubscribeMess 133
ACF.SubscribeRsp 133
ACF.SubscribeState 133
ACF.UnSubscribe 133

VTAM topology agent introduction 149
VTAM topology monitoring

data, monitoring LU
action request 207
action termination 210
description 206

372 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

VTAM topology monitoring (continued)
data, monitoring LU (continued)

initial data 208
overview 206
snapshot data 210
snapshot example 211
update data response 208

data, monitoring network
action request 173
action termination 175
description 173
initial data 174
overview 173
snapshot data for APPN 176
snapshot data for subarea 177
snapshot example 179
update data response 174

resources, monitoring through reports
creation of 213
data, event-report 215
description 213
environment 213
example 217
manager, reporting to 214
overview 213

topology, monitoring local
action request 187
action termination 191
description 185
initial data 188
overview 186
snapshot data 192
snapshot example 197
update data response 189

Index 373

374 z/OS V1R2.0 CS: CMIP Services and Topology Agent Guide

Readers’ Comments — We’d Like to Hear from You

z/OS Communications Server
CMIP Services and Topology Agent Guide
Version 1 Release 2

Publication No. SC31-8828-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC31-8828-01

SC31-8828-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Software Reengineering
Department G7IA/ Bldg 503
Research Triangle Park, NC
27709-9990

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694–A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC31-8828-01

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
z/

O
S

Co
m

m
un

ic
at

io
ns

Se
rv

er
z/

O
S

V
1R

2.
0

C
S:

C
M

IP
Se

rv
ic

es
an

d
To

po
lo

gy
A

ge
nt

G
ui

de
Ve

rs
io

n
1

R
el

ea
se

2

	Contents
	Figures
	Tables
	About This Book
	Where to Find More Information
	Where to Find Related Information on the Internet
	DNS Web Sites

	Licensed Documents
	LookAt, an Online Message Help Facility
	How to Contact IBM® Service
	z/OS Communications Server Information
	Softcopy Information
	z/OS Communications Server Library
	Redbooks
	Related Information
	Determining If a Publication Is Current

	Summary of Changes
	Part 1. VTAM CMIP Services
	Chapter 1. Introduction to Object Orientation and CMIP Services
	Object-Oriented View of Resources
	Relationship between CMIP Services and Local Application Programs
	Relationship between CMIP Services and Remote Management Systems
	Overview of CMIP Services
	Locates Objects
	Registers Objects
	Coordinates Traffic
	Replicates Scoped Requests
	Filters and Routes Events
	Provides Security
	Creates and Ends Associations
	Creating Associations
	Ending Associations

	Manages Associations
	Manages PDUs
	Supports All CMIP Verbs and Most CMIP Parameters

	Requirements for Application Programs
	Types of Application Programs
	Basic Application Programs
	Subtree Managers
	Create Handlers
	Special Considerations for Manager Application Programs
	Special Considerations for Topology Manager Application Programs
	Patterns of EFDs That CMIP Services Recognizes
	Specific Object Classes That CMIP Services Recognizes

	CMIP Error Handling
	General Error Handling
	Errors Found during Outbound CMIP Processing
	Errors Found during Inbound CMIP Processing

	CMIP Sequencing for Separate CMIP Operations

	Chapter 2. Sample CMIP Application Program
	ACYCMS1C Source File
	ACYCMS2A Source File
	ACYCMS3A Source File
	ACYCMS4A Source File
	ACYCMS5A Source File
	ACYCMS6A Source File
	ACYCMS7A Source File

	Chapter 3. Overview of CMIP Services API Functions
	Decisions to Make before Coding
	Common Storage Area Storage or Data Space Storage?
	Common Storage Area Interface
	Data Space Interface
	Advantages of CSA Interface and Data Space Interface

	What Form of Distinguished Name?
	What Type of Application Program—Manager or Agent?

	Requirements for CMIP Application Programs
	Format of API Messages
	Description and Example of the API header
	API Header Fields
	Description and Example of the String
	Rules for the Source and Destination Fields in the String

	Chapter 4. CMIP Services API Function Syntax and Operands
	Overview of API Functions
	How the Functions Are Coded
	How the Functions Are Described
	Completion Information
	Synchronous and Asychronous Functions
	MIBConnect—MIB Connection Function
	MIBDisconnect—MIB Disconnection Function
	MIBSendCmipRequest—CMIP Request Function
	MIBSendCmipResponse—CMIP Response Function
	MIBSendDeleteRegistration—Deregistration Function
	MIBSendRegister—MIB Asynchronous Registration Function
	MIBSendRequest—MIB Queue Request Function
	MIBSendResponse—MIB Queue Response Function

	Chapter 5. Read Queue Exit Routine
	Read Queue Exit Routine for the CSA Interface
	VTAM Reason Codes (for CSA)
	Registers upon Entry (for CSA)
	Registers upon Termination (for CSA)
	Parameter List (for CSA)

	Read Queue Exit Routine for Data Space Storage
	VTAM Reason Codes (for Data Space)
	Registers upon Entry (for Data Space)
	Registers upon Termination (for Data Space)
	Parameter List (for Data Space)

	Chapter 6. Dequeue and Release Routines for Data Space Storage
	Format of Data on Data Space
	Dequeueing a Buffer with the Dequeue Routine
	Input to the Dequeue Routine
	Output for Dequeue Routine

	Releasing a Buffer with the Release Routine
	Input to the Release Routine
	Output to the Release Routine
	Abnormal Exits

	Chapter 7. Rules for Constructing Standard CMIP Strings
	Overview
	How Application Programs Format Data to Be Sent to CMIP Services
	Explicit Value Format
	ASN.1 Value Format
	MIB Variable Format
	Constructed Value Format
	Hexadecimal BER Format

	Primitive ASN.1 Data Types
	BOOLEAN Type
	How an Application Program Sends a BOOLEAN Value to CMIP Services
	How CMIP Services Sends a BOOLEAN Value to an Application Program

	INTEGER Type
	How an Application Program Sends an INTEGER Value to CMIP Services
	How CMIP Services Sends an INTEGER Value to an Application Program

	ENUMERATED Type
	How an Application Program Sends an ENUMERATED Value to CMIP Services
	How CMIP Services Sends an ENUMERATED Value to an Application Program

	REAL Type
	How an Application Program Sends a REAL Value to CMIP Services
	How CMIP Services Sends a REAL Value to an Application Program

	BIT STRING Type
	How an Application Program Sends a BIT STRING to CMIP Services
	How an Application Program Specifies a BIT STRING Value
	How CMIP Services Sends a BIT STRING to an Application Program

	OCTET STRING Type
	How an Application Program Sends an OCTET STRING to CMIP Services
	How an Application Program Specifies an OCTET STRING
	How CMIP Services Sends an OCTET STRING to an Application Program

	NULL Type
	How an Application Program Sends a NULL Value to CMIP Services
	How an Application Program Specifies a NULL Value
	How CMIP Services Sends a NULL Value to an Application Program

	OBJECT IDENTIFIER Type
	How an Application Program Sends an OBJECT IDENTIFIER to CMIP Services
	How an Application Program Specifies an OBJECT IDENTIFIER Value
	How CMIP Services Sends an OBJECT IDENTIFIER to an Application Program

	Character String Types
	How an Application Program Sends a Character String to CMIP Services
	Valid Characters for Character Strings
	Valid Characters for NumericString Type
	Valid Characters for PrintableString Type
	Valid Characters for GraphicString and ISO646String
	How CMIP Services Sends a Character String to an Application Program

	Time Types
	How an Application Program Sends a TIME Value to CMIP Services
	How CMIP Services Sends a TIME Value to an Application Program

	Constructed ASN.1 Types
	How CMIP Services Sends a Constructed Type to an Application Program
	SEQUENCEs
	SETs
	SET OF and SEQUENCE OF Types

	Decision Types
	CHOICE Types
	How an Application Program Sends a CHOICE to CMIP Services
	How an Application Program Specifies CHOICE Values
	How CMIP Services Sends a CHOICE to an Application Program

	ANY DEFINED BY Types
	How an Application Program Sends an ANY DEFINED BY Value to CMIP Services
	How an Application Program Specifies ANY DEFINED BY Values

	ANY Types
	How an Application Program Sends an ANY Value to CMIP Services
	How CMIP Services Sends an ANY Value to an Application Program

	Additional Examples of How Application Programs Send Data

	Chapter 8. Examples of Standard CMIP Strings
	Requests and Indications
	GET Request—Syntax
	GET Request—Example Request String
	GET Request—Corresponding Indication
	ACTION Request—Syntax
	ACTION Request—Example Request String
	ACTION Request—Corresponding Indication

	Responses and Confirmations
	GET Response—Syntax
	GET Response—Example Response String
	GET Response—Corresponding Confirmation
	CREATE Response—Syntax
	CREATE Response—Example Response String
	CREATE Response—Corresponding Confirmation

	Chapter 9. Create and Delete Requests
	Create Requests
	Creating the New Object Requested on the Create Request
	Rejecting the Create Request
	Creating an Object Different from Object on the Create Request

	Delete Requests
	Deleting the Object Requested on the Delete Request
	Rejecting the Delete Request

	Chapter 10. VTAM-Specific Requests and Responses
	Subscribing to Association Information
	Syntax for the Subscription Strings
	Examples of Subscription Strings
	How the Subscription Strings Are Used

	Registering an Application Entity
	Syntax of the Registration Strings
	Examples of RegisterAE Strings
	How the Registration Strings Are Used

	Starting Associations
	Syntax of the Associate Strings
	Examples of the Associate Strings
	How the Associate Strings Are Used

	Ending Associations
	Syntax of the ACF.Release and ACF.Abort Strings
	Examples of the ACF.Release and ACF.Abort Strings
	How the ACF.Release and ACF.Abort Strings Are Used

	Getting Association Information
	Syntax of the GetAssociationInfo String
	Examples of the GetAssociationInfo String
	How the GetAssociationInfo String Is Used

	Creating a Dedicated Association
	Requests and Responses with the MIB Prefix
	MIB.GeneralRequest, MIB.GeneralResponse, and MIB.GeneralError
	MIB.ServiceError
	MIB.ServiceAccept
	MIB.RegisterAccept

	Chapter 11. Application-Program-to-Application-Program Security
	Part 2. VTAM Topology Agent
	Chapter 12. Introduction to VTAM Topology Agent
	Chapter 13. OSI Object Classes and VTAM Resources
	OSI Object Classes
	Mapping VTAM Resources to OSI Object Classes
	Naming the Objects
	OSI Object States
	Mapping VTAM Status to OSI States
	OSI States for VTAM Resources with VTAM Status
	OSI States for VTAM Resources without VTAM Native Status

	Chapter 14. OSI Operations
	Specifying OSI Operations with CMIP Verbs
	GET
	CANCEL-GET
	ACTION
	SET
	DELETE
	Other Operations

	Responding to CMIP Requests
	Responding to GET ROIV Messages
	Responding to CANCEL-GET Messages
	Responding to ACTION ROIV Messages
	EVENT-REPORT, SET, and DELETE Messages

	Monitoring Resources with the ACTION(snapshot) Operation
	ACTION(snapshot) Request
	ACTION(snapshot) Response
	ACTION(snapshot) Initial Data
	ACTION(snapshot) Update Data
	ACTION(snapshot) Update Merging
	ACTION(snapshot) Termination

	Chapter 15. VTAM Topology Monitoring
	Requesting and Monitoring Network Data (snaNetwork)
	Overview
	Action Request
	Initial Data Response
	Update Data Response
	Action Termination
	snaNetwork Snapshot Data (APPN Data)
	snaNetwork Snapshot Data (Subarea Data)
	snaNetwork Snapshot Example

	Requesting and Monitoring Local Topology (snaLocalTopo)
	Overview
	Action Request
	Initial Data Response
	Update Data Response
	Action Termination
	snaLocalTopo Snapshot Data
	snaLocalTopo Snapshot Example

	Requesting and Monitoring LU Data (luCollection)
	Overview
	Action Request
	Initial Data Response
	Update Data Response
	Action Termination
	luCollection Snapshot Data
	luCollection (PU) Snapshot Example

	Monitoring Resources through Event Reports
	Overview
	Management of the Event Reporting Environment
	Creation of the Event Forwarding Discriminator
	Reporting Events to the Manager Application Program
	Event Report Data
	Event Report Example

	Chapter 16. Requesting Specific Resource Data
	Requesting Specific Resource Data (GET)
	Overview
	GET Request
	Network-Qualified Names and GET Requests
	GET Response
	GET Data
	GET Data Example

	Requesting Specific Resource Data (logicalUnitIndex)
	Overview
	Action Request
	Initial Data Response
	Action Termination
	logicalUnitIndex Snapshot Data
	logicalUnitIndex Snapshot Example

	Part 3. Appendixes
	Appendix A. C Language Header File (ACYAPHDH)
	Appendix B. ASN.1 Specification of the Basic CMIP Strings
	Appendix C. Error Codes Sent by CMIP Services
	MIB.ServiceError Error Codes
	CMER VIT Entry Error Codes

	Appendix D. VTAM CMIP Services Compliance with Related Standards and Profiles
	ISO Standards Documents
	ISO 9596-1 CMIP—Common Management Information Protocol
	(ISO 10164-5) OSI Systems Management Part 5: Event Report Function
	ISO 8650 ACSE—Association Control Service Element
	ISO 8823 Presentation Layer
	ISO 8825 BER—Basic Encoding Rules (BER)

	ISO Standards Documents
	DISP 11183-1, AOM 10
	DISP 11183-3, AOM 12
	AOM221—General Event Report Management

	Appendix E. VTAM Topology Agent Object and Attribute Tables
	VTAM-Supported Objects for snapshot Operations
	Naming Attributes for snapshot Objects
	VTAM-Supported Objects for snapshot Responses
	VTAM-Supported Attributes for snapshot Responses
	VTAM-Supported Objects for GET Operation
	VTAM-Supported Attributes for GET Operation

	Appendix F. VTAM Topology Agent Attributes Definition
	abmSupported
	adapterAddresses
	adapterNumbers
	adjacentLinkStationAddress
	adjacentNodeName
	adjacentNodeType
	administrativeState
	allomorphs
	appnNodeCapabilities
	appnTGcapabilities
	attachedCircuitList
	availabilityStatus
	cdrscRealLUname
	connectionID
	connectionType
	cp-cpSessionSupport
	definitionGroupName
	dependencies
	dlcName
	dlurList
	dlurLocalLsAddress
	dlurName
	endpointForArc
	erList
	extendedAppnNodeCapabilities
	functionID
	gatewayNode
	gatewaySSCP
	interconnectedNetids
	limitedResource
	limitedResourceTimeout
	lineType
	linkName
	linkStationRole
	luGroupMembers
	luGroupName
	luGroupSize
	luSecondName
	maxBTUsize
	nameBinding
	nativeStatus
	nlrResidentNodePointer
	nnServerPointer
	nonLocalResourceName
	nonLocalResourceType
	objectClass
	opEquipmentList
	opNetworkName
	operationalState
	packages
	partnerConnection
	portId
	proceduralStatus
	puName
	receiveWindowSize
	realSSCPname
	registeredBy
	relatedAdapter
	residentNodePointer
	resourceSequenceNumber
	routeAdditionResistance
	sendWindowSize
	snaNodeName
	softwareList
	subareaAddress
	subareaLimit
	supportedResources
	sysplexInfo
	tn3270ClientDnsName
	tn3270ClientIpAddress
	tn3270ClientPortNumber
	transmissionGroupNumber
	underlyingConnectionNames
	userLabel
	unknownStatus
	usageState

	Appendix G. VTAMTOPO Filtering Option Reporting
	Appendix H. Information Apars
	IP Information Apars
	SNA Information Apars

	Appendix I. Notices
	Programming Interface Information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

